Higgs Branching Fraction Measurement

'09 10/2 Y. Takubo (Tohoku U.)

Introduction

Higgs branching ratio

- Proportional to particle masses.
- Measurement of Higgs branching ratio is essential to confirm Higgs mechanism.

 \rightarrow One of the most important measurements at ILC.

LOI requirement

- Estimation of measurement accuracy of $H \rightarrow cc$ with $e^+e^- \rightarrow ZH$.
- Optionally, $H \rightarrow \mu \mu$

In this talk, analysis results of ILD and SiD are compared based on LOI and talk at ALCPG09.

Simulation setup

Simulation setup

- Higgs mass: 120 GeV
- E_{CM} : 250 GeV (with Beamstrahlung, ISR, and FSR)
- Integrated luminosity: 250 fb⁻¹
- Beam energy spread: 0.28% (e⁻) and 0.18% (e⁺)
- Beam polarization: 80% left-handed for e^- and 30% right-handed for e^+

Signal v.s. BG

- Signal: ZH→ffcc, ffµµ
 - ≻ σ(ZH): 387fb
 - > BR(H \rightarrow cc): 3.6%, BR(H \rightarrow µµ): 0.01%
- BG: qqqq, qq, qqll,

Key point to study $BR(H \rightarrow cc)$

Key point to study $BR(H \rightarrow cc)$

- Selection of ZH events from SM-BG.
 - > There are large SM-BG from ZZ, WW, and etc..
 - > The kinematical selection cut is necessary.
- Identification of $H \rightarrow cc$ and $H \rightarrow bb$ in ZH events.
 - > $H \rightarrow bb$ is large BG for $H \rightarrow cc$.
 - > LCFIVertex is used for the flavor tagging.
- Estimation of $BR(H \rightarrow cc)$
 - > Statistical evaluation assuming knowledge of ZH xsec and Higgs branching ratio other than $H\rightarrow$ cc.
 - > Template fitting

Event selection (ILD)

ZH selection in ILD

- $80 \text{GeV} < M_{\text{miss}} < 140 \text{GeV}$
- $20 \text{GeV} < P_T < 70 \text{GeV}$
- $P_L < 60 GeV$
- $P_{max} < 30 GeV$
- # of charged tracks >10
- $Y_{+} < 0.02$
- $0.2 < Y_{-} < 0.8$
- $100 \text{GeV} < M_{jj} < 130 \text{GeV}$

No cut

- Signal: 707
- ZH BG: 18,653
- SM BG: 10,586,927

After selection cut

- Signal: 318 (0.45)
- ZH BG: 7,066 (0.38)
- SM BG: 50,106 (0.005)

Event selection (SiD)

ZH selection in SiD

- $20 < P_t < 90 GeV$
- # of charged tracks > 4
- $-\log(Y_{min}) < 0.8$
- Thrust < 0.95
- $\cos(\text{thrust}) < 0.98$
- $100 < \theta_{jj} < 170$
- $100 \text{GeV} < M_{jj} < 140 \text{GeV}$
- Highest $E_{\gamma} < 10 GeV$

<u>NN analysis to select $H \rightarrow cc$ </u>

- Input variables
 - > Variables used for selection cut
 - > Information of flavor tagging
- # of event after selection
 - > Signal : 476 (0.28)
 - > ZH BG : 246
 - > SM BG : 570

Measurement accuracy of $ZH \rightarrow vvcc$

ILD

- Template fitting was used to derive Higgs branching ratio.
- Template: 3D histogram of b/c/bc-likeness obtained by LCFIVertex.
- $\Delta BR(H \rightarrow cc) = 13.8\% \oplus \Delta \sigma_{ZH}$

SiD

• The measurement accuracy of $BR(H \rightarrow cc)$ was estimated with the statistical error after the selection cut.

> The procedure to estimate ZH-BG should be considered.

•
$$\Delta BR(H \rightarrow cc) = \frac{\sqrt{N_{sig} + N_{ZH-BG} + N_{SM-BG}}}{N_{sig}} \oplus \Delta \sigma_{ZH}$$

= 10.3% $\oplus \Delta \sigma_{ZH}$

How is the latest result?

New results of $ZH \rightarrow vvcc$

Results at LOI

- ILD: 13.8% $\oplus \Delta \sigma_{ZH}$
- SiD: 10.3% $\oplus \Delta \sigma_{ZH}$

New results at ALCPG09

- ILD: 13.8% $\oplus \Delta \sigma_{ZH}$
- SiD: 11.6% $\oplus \Delta \sigma_{ZH}$

> The numerical treatments and program bugs were corrected.

The results of ILD and SiD are in the consistent level.

Event selection (ILD)

ZH selection in ILD

- Pre-selection
- Thrust ≤ 0.85
- $|\cos\theta_T| \le 0.8$
- acoplanarity ≥ 0.01
- $\theta_{jj}^{min} \ge 40$
- $\chi_{kin}^2(M_{j1j2}=M_Z)$ prob. > 0.01
- $\chi_{kin}^2(M_{j1j2}=M_{j3j4})$ prob. < 0.0001
- $115 GeV < M_H < 125 GeV$

<u>Selecttion of H→cc</u>

• c-likeness for two jets to reconstruct Higgs candidate >0.5 & combined c-likeness > 0.8

<u>No cut</u>

- Signal: 1,864
- ZH BG: 43,601
- SM BG: 7,463,574

After selection cut

- Signal: 37 (0.02)
- ZH BG: 24 (0.0006)
- SM BG: 97 (0.00001)

Event selection (SiD)

ZH selection in SiD

- # of charged tracks > 4
- $-\log(Y_{min}) < 2.7$
- Thrust < 0.95
- $\cos(\text{thrust}) < 0.96$
- $75 < \theta_{13} < 165$
- $50 < \theta_{13} < 150$
- $95 GeV < M_H < 145 GeV$
- $45 \text{GeV} < M_Z < 105 \text{GeV}$
- Highest $E_{\gamma} < 10 GeV$

<u>NN analysis to select $H \rightarrow cc$ </u>

- Input variables
 - > Variables used for selection cut
 - > Information of flavor tagging
- # of event after selection
 - > Signal : 814 (0.47)
 - ≻ ZH BG : 547
 - > SM BG : 569

Measurement accuracy of $ZH \rightarrow qqcc$

The measurement accuracy of $BR(H \rightarrow cc)$ was estimated with the statistical error after the selection cut in both ILD and SiD.

> The procedure to estimate ZH-BG should be considered.

$$\frac{\text{ILD}}{\bullet \Delta \text{BR}(\text{H} \rightarrow \text{cc})} = \frac{\sqrt{N_{\text{sig}} + N_{\text{ZH}-\text{BG}} + N_{\text{SM}-\text{BG}}}}{N_{\text{sig}}} \oplus \Delta \sigma_{\text{ZH}}$$
$$= 30.0\% \oplus \Delta \sigma_{\text{ZH}}$$
$$\frac{\text{SiD}}{\bullet \Delta \text{BR}(\text{H} \rightarrow \text{cc})} = \frac{\sqrt{N_{\text{sig}} + N_{\text{ZH}-\text{BG}} + N_{\text{SM}-\text{BG}}}}{N_{\text{sig}}} \oplus \Delta \sigma_{\text{ZH}}$$
$$= 5.8\% \oplus \Delta \sigma_{\text{ZH}}$$

There is a big difference between ILD and SiD.→ Let's compare the latest results!

New results of $ZH \rightarrow qqcc$

Results at LOI

- ILD: $30.0\% \oplus \Delta \sigma_{ZH}$
- SiD: 5.8% $\oplus \Delta \sigma_{ZH}$

• ILD: 16.6% $\oplus \Delta \sigma_{ZH}$

> The selection criteria was modified and the template fitting was used to derive Higgs BR.

• SiD: 8.8% $\oplus \Delta \sigma_{ZH}$

> The numerical treatments and program bugs were corrected.

There is still large difference.

 \rightarrow To be checked with both groups.

Event selection (ILD)

Measurement accuracy of $ZH \rightarrow Ilcc$ was studied only in ILD.

ZH selection

- $N_{particle} > 25$
- $70 GeV < M_Z < 110 GeV$
- $117 \text{GeV} < M_{\text{H}} < 150 \text{GeV}$
- $|\cos \theta_Z| < 0.9$
- $100 \text{GeV} < M_{\text{recoil}} < 140 \text{GeV}$
- Likelihood cut (e-channel)

After selection cut (No cut)

- e-channel
 - > Signal: 1,240(2,493)
 - ▶ eeqq: 941(87,580)
 - > evqq: 62(218,378)
- μ-channel
 > Signal: 1,371(2,202)
 > μμqq: 1,665(24,003)

Measurement accuracy (ILD)

LOI resutls at ILD

- Template fitting was used to derive Higgs branching ratio.
- Template: 2D histogram of b/c-likeness obtained by LCFIVertex.
- $\Delta BR(H \rightarrow cc) = 28\% \oplus \Delta \sigma_{ZH}$
 - > e-channel: 36%
 - ≻ µ-channel: 46%

New result at ALCPG09

- BR(H \rightarrow cc): **20.8%** $\oplus \Delta \sigma_{ZH}$
 - ▶ e-channel: 29.1%
 - ≻ µ-channel: 29.8%

• 3D histogram of b/c/bc-likeness was used as the template instead of 2D histogram.

Analysis of $ZH \rightarrow qq\mu\mu$ (SiD)

Measurement accuracy of $ZH \rightarrow qq\mu\mu$ was studied only in SiD.

ZH selection

- 2 muon track selection
- # of charged tracks > 5
- $E_{vis} > 190 GeV$
- $30 GeV < E_{j1} < 105 GeV \& 10 GeV < E_{j2} < 70 GeV$
- $P_T(j1) < 90 \text{GeV \& } P_T(j2) < 60 \text{GeV}$
- 119.1GeV < $M_{\mu\mu}$ < 120.9GeV
- $\cos\theta_{\mu\mu}$ < -0.5 & $\cos\theta_{BB}$ < -0.8
- $\theta_{\mu j} > 0.1$ rad.
- Acoplanarity in BB system > 2.8 rad.
- $80 < \chi_{ZZ}^2 < 120 \& \chi_{ZH}^2 < 20$
- Higgs & Z mass cut

After selection cut

- Signal: 7.66 (0.41)
- SM BG: 39.3

Signal significance: 1.1

- ZH \rightarrow vvµµ is also ongoing.
- Multi-variate analysis will improve the result.

Comparison between ILD and SiD

The analysis results obtained by ILD and SiD are summarized.

Conclusions

- ZH \rightarrow vvcc: The result is almost consistent \leftarrow OK!
- ZH \rightarrow qqcc: There are still large difference \leftarrow To be checked.
- ZH \rightarrow llcc/ffµµ: It is preferable to study in both groups.

Summary

• The measurement accuracy of Higgs branching ratio was studied in detail for LOI.

• Analysis results were compared between ILD and SiD.

> For $ZH \rightarrow vvcc$, both group have the same level of the measurement accuracy (11~14%).

> For $ZH \rightarrow qqcc$, there are large difference in the results.

> Analysis procedure of $ZH \rightarrow qqcc$ must be checked in both groups.

- ZH \rightarrow llcc/ffµµ should be studied in both groups.
- ILD and SiD group will continue to improve their results.

Selection of vvcc at LOI (SiD)

	ZH→vvcc	ZH others	SM BG	
No cut	2,869	76,910	9,275,594,683	
2 lepton track selection	637	14,294	45,936,973	
$20 < P_t < 90 GeV$	619	13,783	18,374,789	
# of charged tracks > 4	618	13,729	17,123,140	
$-\log(Y_{\min}) < 0.8$	609	13,416	6,849,256	
Thrust < 0.95	560	12,179	685,329	
$\cos(\text{thrust}) < 0.98$	550	11,945	627,113	
$100 < \theta_{jj} < 170$	525	10,226	576,422	
$100 \text{GeV} < M_{jj} < 140 \text{GeV}$	519	10,088	203,292	
Highest $E_{\gamma} < 10 \text{GeV}$	506	9,902	109,057	

Selection of qqcc at LOI (ILD)

	ZH→vvcc	ZH others	SM BG
Pre-selection	1864.1	43600.5	7463574
Thrust < 0.85	1653.7	39644.7	4000974
cos(thrust)<0.8	1282.8	30593.2	2259571
Acoplanarity > 0.01	1195.1	29164.6	1922816.7
$\theta_{jj} > 40$	1057.9	26025.9	1660416.4
$\chi_{kin}^2(M_{j1j2}=M_Z)$ prob. > 0.01	265.4	4760.5	287230.7
$\chi_{kin}^2(M_{j1j2}=M_{j3j4})$ prob. < 0.0001	203.3	3508.6	117657.6
$115 \text{GeV} < M_{\text{H}} < 125 \text{GeV}$	118.8	1821.4	10337.8
c-likeness for two jets to reconstruct Higgs candidate >0.5 & combined c- likeness > 0.8	37.2	24.3	96.9

Selection of qqcc at LOI (SiD)

	ZH→qqcc	ZH others	SM BG
No cut	2,869	76,910	9,275,594,683
No lepton track selection	1,837	41,016	39,398,366
# of charged tracks > 4	1,143	19,954	18,601,753
$-\log(Y_{\min}) < 2.7$	1,101	19,011	13,921,271
Thrust < 0.95	1,047	17,743	8,737,017
$\cos(\text{thrust}) < 0.96$	1,017	17,106	7,943,851
$105 < \theta_{13} < 165$	979	16,262	5,871,237
$70 < \theta_{24} < 160$	978	16,247	4,898,312
$110 \text{GeV} < M_{\text{H}} < 140 \text{GeV}$	966	16,027	1,917,231
$80 \text{GeV} < M_Z < 110 \text{GeV}$	963	16,018	1,561,432
Highest $E_{\gamma} < 10 \text{GeV}$	947	15,687	967,312

Selection of qqcc at ALCPG09(ILD)

	qqh	ddpb	qqcc	pppp	nlqq	llqq	nnqq		qq
Reconstructed	52506.9	34962.8	1915.43	4.05E+06	4.11E+06	398324	149979	762975	3.54E+07
χ²<10	38691.2	29011.4	1661.43	1.82E+06	48728.8	63300.7	1.14147	30435.1	2.01E+06
-70 <plz<70< td=""><td>38408.4</td><td>28830.8</td><td>1647.6</td><td>1.74E+06</td><td>48474.7</td><td>55837.3</td><td>1.14147</td><td>22944.1</td><td>1.62E+06</td></plz<70<>	38408.4	28830.8	1647.6	1.74E+06	48474.7	55837.3	1.14147	22944.1	1.62E+06
200 <evis<270< td=""><td>37916.1</td><td>28541.1</td><td>1641.3</td><td>1.72E+06</td><td>43655.3</td><td>54742.8</td><td>0.581929</td><td>22377.1</td><td>1.59E+06</td></evis<270<>	37916.1	28541.1	1641.3	1.72E+06	43655.3	54742.8	0.581929	22377.1	1.59E+06
- 0.85≺cosθ_<0.85	32615.7	24564.3	1411.91	1.41E+06	35553.1	38466.2	0.426926	8723.81	1.14E+06
thrust<0.9	32026	24063	1382.13	1.40E+06	31342.4	35665	0	5572.8	502334
NPFOs in jets >10	26709.5	20677.5	1151.55	985671	127.197	<mark>1</mark> 91.979	0	0	174110
Eimin/Eimax>0.25	25951.6	20096.9	1117.04	946401	123.815	176.712	0	0	151730
50 <pimax<100< td=""><td>25761.4</td><td>19935.7</td><td>1104.31</td><td>924106</td><td>120.202</td><td>171.281</td><td>0</td><td>0</td><td>139277</td></pimax<100<>	25761.4	19935.7	1104.31	924106	120.202	171.281	0	0	139277
Yplus>2.0e-4	25604.6	19800.3	1085.17	899125	116.804	169.394	0	0	136762
Yminus>1.0e-3	25576.8	19774.5	1083.83	898310	106.163	166.368	0	0	129520
20<θmin<120	25339.3	19562.2	1072.43	890169	106.163	154.779	0	0	114719
110<0max<170	24043.3	18624.5	1017.44	804065	85.1689	145.004	0	0	109094
105 <m_<135< td=""><td>18334.7</td><td>14296</td><td>809.984</td><td>526827</td><td>41.3248</td><td>87.5279</td><td>0</td><td>0</td><td>70296.7</td></m_<135<>	18334.7	14296	809.984	526827	41.3248	87.5279	0	0	70296.7