

SiD Benchmarking Analyses With b/c Flavour Tagging

Tomáš Laštovička, University of Oxford 2009 Linear Collider Workshop of the Americas Albuquerque, NM

Overview

Credits

LCFI Package

Higgs Boson Decay Branching Ratios

Top Quark Analysis

Sbottom Production Within Sbottom Co-annihilation Scenario

Remarks and Future Plans

Summary

Credits

- Simulation/Reconstruction
 - Tim Barklow, Norman Graf, Jan Strube
- Higgs Branching Ratios
 - Yambazi Banda (Oxford)
- Top Analysis
 - Erik Devetak (Oxford)
- Sbottom Production
 - Alexander Belyaev (Southampton)
- + Andrei Nomerotski and myself (Oxford)

LCFI PACKAGE

LCFI Package

- Used for jet flavour tagging and secondary vertex reconstruction.
- Topological vertex finder ZVRES.
- Standard LCIO input/output
 - Marlin environment (used for both ILD/SiD)
- Flavour tagging based on Neural Nets.
 - Combine several variables.

LCFI Package Optimisation for SiD LoI

- Default LCFI Neural Nets performed poorly with the full sim/rec SiD data.
- Lol Solution:
 - NN retrained and a different approach chosen (1 larger NN per tag, instead of 3 nets)
 - Package parameters not optimised due to very limited time and manpower constraints.

Dashed (LCFI default) vs. re-trained NNs.

HIGGS BOSON DECAY BRANCHING RATIOS

Motivation

- Measure the Higgs branching ratio to $c\overline{c}$ by looking at the following channels:
 - $-Z \rightarrow \nu\nu, H \rightarrow c\bar{c}$
 - $-Z \rightarrow q\overline{q}, H \rightarrow c\overline{c}$
- High quality c-tagging required.
- Extend analysis further to H→bB and H→gg.
 - Finished, not a part of Lol.

Data Samples

- For data samples the following is assumed:
 - Centre-of-mass = 250 GeV (peak xsec for higgstrahlung)
 - Integrated luminosity = 250 fb⁻¹
 - Signal Higgs mass = 120 GeV
 - +80% e⁻ polarization, -30% e⁺ polarization
 - ~ 7 Million Standard Model background events
 - \sim 200 000 inclusive ZH signal events
 - Full simulation and reconstruction

Event Selection

- 1) Classification in two Z-decay modes
 - Neutrino channel (2 jets) and Hadronic Channel (4 jets)
 - Visible energy and a number of leptons cut
- 2) Basic Event Selection
 - Kinematic and topological cuts
- 3) Neural Net event selection
 - Based on 2 Neural Nets: 1st trained to separate SM and ZH, and 2nd to separate ZH-background and ZH-signal.
 - Inputs: Jet tags, basic selection variables, ...
 - Then cut on both NN₁ and NN₂ outputs simultaneously.

Results

SiD

	Neutrino	Hadronic
Signal events	178	407
SM background events	140	673
Higgs background events	109	213
Signal efficiency %	28	22
Signal σ_{Hcc}	$6.8\pm0.79~{ m fb}$	$6.9\pm0.61~{\rm fb}$
Relative uncertainty on σ_{Hcc}	11.6%	8.8%

- Leading to combined BR uncertainty of about 8.5%.
- Similar approach yields
 - -4.5% for BR(H→bB) and 11.1% for BR(H →gg)
 - ZH cross sections uncertainty is dominant for BR(H→bB)
- Analyses still being developed.

TOP QUARK ANALYSIS

Data Samples

- Standard Model background sample
 - About 7M events, weighted
- bBfFfF sample
 - $-M_{top} = 174 \text{ GeV}, 250 \text{k events}$
 - Signal (bBqQqQ) plus remaining background
 - Six jets, at least two of them are b-jets.
- bBfFfF template samples
 - $M_{top} = 174 (174.5, 173.5) GeV, each 1.1M events$
- All samples normalised to 500 fb⁻¹ and produced @ \sqrt{s} = 500GeV.
 - Half of luminosity for -80/+30% polarisation, the other half for +80/-30%.

Event Selection

Basic selection cuts:

Page ■ 14

- 99.996% bkg rejection
- 10% signal rejection eff.

Kinematic and Topological Event Selection					
Variable	Barrel	Value			
E_{tot}	>	$400 \mathrm{GeV}$			
$\log(y_{56})$	>	-8.5			
number of particles in event	>	80			
number of tracks in event	>	30			
no isolated leptons					

Jet Flavour Tagging

- Good performance for six-jet events.
- Selection done based on a sum of NN outputs (b-tag only) of all jets.

Page ■ 15

Results – Top Quark Mass

Page ■ 16

Kinematic fitting significantly improves the resolution.

Results – Top Mass Measurement Uncertainty

- Mass measurement uncertainty estimated using curve and template fits
 - Both give consistent numbers, around 50MeV
 - Template method preferred, stable and better χ^2 behavior.

Template Top Quark Mass						
Event Selection	$Fit \ Range \ (GeV)$	χ^2_{min}/NDF	Mass~(GeV)	σ (GeV)		
No Kinematic fit	120-200	148/159	174.135	0.090		
No Kinematic fit	140-180	83/79	174.173	0.097		
Kinematic fit	150-200	94/99	174.033	0.053		
Kinematic fit	165-200	63/69	173.991	0.056		
Kinematic fit	165-185	42/39	173.990	0.058		
Probability > 1%	150-200	101/99	174.018	0.049		
Probability > 1%	165-200	61/69	174.013	0.049		
Probability > 1%	165-185	41/39	174.010	0.053		
Probability > 5%	150-200	97/99	174.024	0.050		
Probability > 5%	165-200	61/69	174.017	0.050		
Probability > 5%	165-185	38/39	174.17	0.053		
Probability > 10%	150-200	100/99	174.012	0.050		
Probability > 10%	165-200	68/69	174.012	0.051		
Probability > 10%	165-185	40/39	174.14	0.052		
Probability > 20%	150-200	91/99	174.013	0.049		
Probability > 20%	165-200	68/69	174.010	0.050		
Probability > 20%	165-185	39/39	174.022	0.052		
Probability > 30%	150-200	98/99	174.021	0.049		
Probability > 30%	165-200	68/69	174.020	0.050		
Probability > 30%	165-185	47/39	174.027	0.052		

Results – Cross Section and Production Asymmetry

- Cross section measurement
 - Estimated to about 0.5% precision
- Quark charge and forward backward asymmetries
 - Vertex charge, momentum weighted vertex and jet charges (LCFI)
 - For both t-quarks and they decay products b-quarks
 - Precision of about 0.008 reached for A_{fb}

Page ■ 18

SBOTTOM PRODUCTION

Motivation

Dark Energy 73% Cold Atoms 4% Dark Matter 23%

- Neutralino is a very attractive CDM candidate.
- Cold Dark Matter favours some particular SUSY scenarios
 - one of them is co-annihilation scenario, when neutralino effectively coannihilates with others quasi-degenerate SUSY particles into SM ones.
- Neutralino-sbottom co-annihilation scenario has not been studied previously.
 - This scenario is virtually impossible for LHC while feasible but challenging at the ILC.
 - The small mass split between neutralino and sbottom leads to small energy release and softness of the visible particles.

Why are Soft b-jets Difficult to Analyse?

- . Tagging efficiency is dropping down quickly at low energies.
- ii. Jet finding algorithms begin to break.
- iii. Large gamma-gamma and gamma-e backgrounds.

Data Samples

- √s = 500 GeV; 1000 fb⁻¹ luminosity; ~ 200k events /sample (CalcHEP)
- Five points close to ILC limits

$$- (M_{NE1}, M_{sbottom}) = (220,210), (230,220)$$

- $(M_{NE1}, M_{sbottom}) = (230,210), (240,220)$
- $(M_{NE1}, M_{sbottom}) = (240,220)$

- mass difference 10 GeV
- mass difference 20 GeV
- mass difference 30 GeV

Page ■ 22

Analysis

- Events are pre-selected using few basic quantities
 - $-E_{visible} < 80 \, {
 m GeV} \, , \Delta R_{\eta\phi} < 3.0 \, , 10 \leq N_{particles} \leq 60 \, , max(|\eta_1|,|\eta_2|) < 2.0$
 - Veto on electrons or photons in forward detectors (>10mrad)
- For the final selection Neural Net is trained with additional inputs.
- Example plots for point (230,210) signal (line) was multiplied by 10⁵

Page ■ 23

Results

- The measurement is interpreted in terms of signal significance calculated as $S / \sqrt{(S + B)}$ and depending on a particular neural net output cut.
- Points (230,210) and (220,210) both reach above 4σ level.
 - Other points are more difficult (low x-section, jet softness) but they all can be excluded @ 95% CL.

Remarks and Future Plans

- Higgs self-coupling (ZHH) analysis
 - Not included in the SiD Lol.
 - Uncertainty too large, after having FSR and full sim/rec samples.
- Work in progress for TeV Linear Collider
 - Tuning of the LCFI package for CLIC and physics/tagging/vertexing studies.
 - The package was never used in $\sqrt{s} = 3$ TeV environment before.

3TeV bB-event vtx+tracker

Summary

H \rightarrow cC branching ratio uncertainty from e⁺e⁻ \rightarrow ZH estimated to ~8.5%. Analysis extended to H \rightarrow bB and H \rightarrow gg.

Top mass uncertainty about 50 MeV on the tree level. Cross section and production asymmetry addressed.

We study a new cosmologically motivated sbottom coannihilation scenario which can be uniquely probed at the ILC. Challenge is due to very soft jets and large γγ bkgr.

Higgs self-coupling analysis delivered large errors.

Work in progress for TeV LC in both SiD and CLIC geometries.