

New Developments in Loop Calculations and Their Implications

Carola F. Berger *CTP, MIT*

ALCPG09, Sept 30th 2009

Disclaimer

Introduction

NNLO

NLO

Implications

Conclusions

New Developments in Loop Calculations - 2/28

Perturbative Calculations

- Parton distribution functions (not for LC)
- Matrix elements <==</p>
- Parton showers, resummation
- Monte Carlo models (also for hadronization)

Instead of an Outline

New Developments in Loop Calculations - 4/28

Instead of an Outline

New Developments in Loop Calculations - 4/28

Instead of an Outline

Carola F. Berger ALCPG09, Sept 30th 2009

New Developments in Loop Calculations - 4/28

NNLO

Introduction

NNLO

- NNLO
- LHC and ILC Processes Known at NNLO
- Example of State-of-the-Art NNLO: Higgs
- $ullet e^+e^- o 3$ Jets at NNLO

NLO

Implications

Conclusions

New Developments in Loop Calculations - 5/28

NNLO

Introduction

NNLO

● NNLO

LHC and ILC Processes Known at NNLO

 Example of State-of-the-Art NNLO: Higgs

 $igodelte{e^+e^-}
ightarrow 3$ Jets at NNLO

NLO

Implications

Conclusions

For certain processes, NNLO is needed

- when the NLO corrections are large, e.g. Higgs production
- for benchmark measurements where experimental errors are small or to facilitate calibration of detectors and determine efficiencies
- to minimize PDF and luminosity uncertainties

NNLO

Introduction

NNLO

● NNLO

LHC and ILC Processes Known at NNLO

 Example of State-of-the-Art NNLO: Higgs

NLO

Implications

Conclusions

For certain processes, NNLO is needed

when the NLO corrections are large, e.g. Higgs production

- for benchmark measurements where experimental errors are small or to facilitate calibration of detectors and determine efficiencies
- to minimize PDF and luminosity uncertainties

From the updated Les Houches wishlist 2007:

process wanted at/beyond NNLO	
10. $gg ightarrow W^*W^*\mathcal{O}(lpha^2 lpha_s^3)$	background to Higgs
11. $pp ightarrow tar{t}$	benchmark process
12. VBF, $Z/\gamma+$ jet	Higgs couplings, SM benchmark
13. W/Z production	SM benchmark
at NNLO QCD, NLO EW	

LHC and ILC Processes Known at NNLO

Introduction

NNLO

```
● NNLO
```

- LHC and ILC Processes Known at NNLO
- Example of State-of-the-Art NNLO: Higgs
- $ullet e^+e^- o 3$ Jets at NNLO

NLO

Implications

Conclusions

■ (differential) Z, W

Anastasiou, Dixon, Melnikov, Petriello; Catani, Cieri, Ferrera, de Florian, Grazzini
Idifferential) Higgs

Ravindran, Smith, van Neerven; Kilgore, Harlander; Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello; Anastasiou, Dissertori, Grazzini, Stoeckli, Webber; Catani, Grazzini; Harlander, Ozeren; Pak, Rogal, Steinhauser

• $e^+e^- \rightarrow 3$ jets, event shapes

Gehrmann-De Ridder, Gehrmann, Glover, Heinrich; Weinzierl

DGLAP splitting kernels

Moch, Vermaseren, Vogt

NNLO parton distributions

Martin, Stirling, Thorne, Watt; Alekhin, Blümlein, Klein, Moch; Jimenez-Delgado, Reya

Example of State-of-the-Art NNLO: Higgs

Anastasiou, Dissertori, Grazzini, Stöckli, Webber

$e^+e^- ightarrow 3$ Jets at NNLO

Introduction

NNLO

- NNLO
- LHC and ILC Processes Known at NNLO
- Example of State-of-the-Art NNLO: Higgs

NLO

Implications

Conclusions

Error on α_s from jet observables

Bethke

 $lpha_s(M_Z) = 0.121 \pm 0.001 ({
m exp}) \pm 0.005 ({
m th})$

Computation of 3-jet event shapes at NNLO

Gehrmann-De Ridder, Gehrmann, Glover, Heinrich; Weinzierl

\Rightarrow extraction of α_s at NNLO+NLLA

Kluth, Pahl, Schieck, JADE

NLO

Introduction

NNLO

NLO

- The LHC Wishlist
 NLO Calculations
 One-Loop Matrix
- Elements • $pp \rightarrow t\bar{t}b\bar{b}$
- New Ideas
- Generalized Unitarity
- From Boxes to Complete Amplitudes

Implications

Conclusions

The (In)Famous Wishlist

Introduction

NNLO

NLO ● The LHC Wishlist ● NLO Calculations ● One-Loop Matrix Elements ● pp → ttbb

• New Ideas

 Generalized Unitarity

 From Boxes to Complete Amplitudes

Implications

Conclusions

	Les Houches 2005
process wanted at NLO	background to
($V \in \{Z, W, \gamma\}$)	
1. $pp ightarrow VV + $ jet	$tar{t}H$, new physics
2. $pp ightarrow H+2$ jets	H production by
	vector boson fusion (VBF)
3. $pp ightarrow t ar{t} b ar{b}$	$tar{t}H$
4. $pp ightarrow tar{t} + 2$ jets	$tar{t}H$
5. $pp ightarrow VV b ar{b}$	$VBF o H o VV$, $tar{t}H$, new physics
6. $pp ightarrow VV + 2$ jets	VBF o H o VV
7. $pp ightarrow V + 3$ jets	new physics
8. $pp ightarrow VVV$	SUSY trilepton

Carola F. Berger ALCPG09, Sept 30th 2009

The (In)Famous Wishlist

Introduction

NNLO

 NLO
 The LHC Wishlist
 NLO Calculations
 One-Loop Matrix Elements
 pp → ttbb
 New Ideas
 Generalized Unitarity

 From Boxes to Complete Amplitudes

Implications

Conclusions

	Les Houches 2007
process wanted at NLO	background to
($V \in \{Z,W,\gamma\}$)	
1. $pp ightarrow VV + $ jet	$tar{t}H$, new physics
2. $pp ightarrow H+2$ jets	H production by
	vector boson fusion (VBF)
	gg: Campbell, Ellis, Zanderighi
3. $pp ightarrow t ar{t} b ar{b}$	$tar{t}H$
4. $pp ightarrow tar{t} + 2$ jets	$tar{t}H$
5. $pp ightarrow VV b ar{b}$	$VBF o H o VV$, $tar{t}H$, new physics
6. $pp ightarrow VV + 2$ jets	VBF o H o VV
	VBF: Bozzi, Jäger, Oleari, Zeppenfeld
7. $pp ightarrow V + 3$ jets	new physics
8. $pp ightarrow VVV$	SUSY trilepton
	ZZZ: Lazopoulos, Melnikov, Petriello
9. $pp ightarrow b ar{b} b ar{b}$	Higgs and new physics

partially completed, via standard methods

New Developments in Loop Calculations - 11/28

The (In)Famous Wishlist

process wanted at NLO

Introduction	1. $pp ightarrow VV + jet$	$tar{t}H$, new physics			
		Dittmaier, Kallweit, Uwer; Campbell, Ellis, Zanderighi			
NNLO	2. $pp ightarrow H+2$ jets	H in VBF			
NLO		Campbell, Ellis, Zanderighi; Ciccolini, Denner Dittmaier			
The LHC Wishlist	3. $pp \rightarrow t\bar{t}b\bar{b}$	$t\bar{t}H$ Bredenstein, Denner Dittmaier, Pozzorini;			
NLO Calculations		Bevilaqua, Czakon, Papadopoulos, Pittau, Worek			
Elements	4. $pp \rightarrow t\bar{t} + 2$ jets	$tar{t}H$			
$\bullet pp \rightarrow ttbb$ $\bullet New Ideas$	5. $pp \rightarrow VVb\bar{b}$	VBF $\rightarrow H \rightarrow VV$, $t\bar{t}H$, new physics			
 Generalized Unitarity 	6. $pp \rightarrow VV + 2$ jets	$VBF \to H \to VV$			
• From Boxes to		VBF: Bozzi, Jäger, Oleari, Zeppenfeld			
Amplitudes	7. $pp ightarrow V+3$ jets	new physics			
Implications		CFB, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre; Ellis, Melnikov, Zanderighi			
Conclusions	8. $pp \rightarrow VVV$	SUSY trilepton			
		Lazopoulos, Melnikov, Petriello; Hankele, Zeppenfeld; Binoth, Ossola, Papadopoulos, Pittau			
	9. $pp ightarrow b ar{b} b ar{b}$	Higgs, new physics			

background to

2009

NLO Calculations

Introduction

NNLO

NLO

- The LHC Wishlist
 NLO Calculations
- One-Loop Matrix Elements
- $igodot pp
 ightarrow t ar{t} b ar{b}$
- New Ideas
- Generalized
 Unitarity
- From Boxes to Complete Amplitudes

Implications

Conclusions

Ingredients:

- One-loop (virtual) matrix elements
- Tree-level matrix elements for real emission
- Both have IR divergences, which cancel in the full cross section ⇒ subtraction terms
- Convolution with PDFs (only for hadronic collisions)
- Integration over final state phase space (with cuts)

Bottleneck up until now: 1-loop matrix elements

One-Loop Matrix Elements

Introduction

NNLO

NLO

- The LHC Wishlist
 NLO Calculations
 One Lean Matrix
- One-Loop Matrix
 Elements
- $igodolp pp
 ightarrow tar{t}bar{b}$
- New Ideas
- Generalized
 Unitarity
- From Boxes to Complete Amplitudes

Implications

Conclusions

Any (massless) one-loop integral can be decomposed into

$$\mathcal{M} = \sum_{i} \frac{d_{i}^{D} I_{4i}^{D}}{i} + \sum_{i} \frac{c_{i}^{D} I_{3i}^{D}}{i} + \sum_{i} \frac{b_{i}^{D} I_{2i}^{D}}{i}$$
$$= \sum_{i} \frac{d_{i}^{D=4} I_{4i}^{D}}{i} + \sum_{i} \frac{c_{i}^{D=4} I_{3i}^{D}}{i} + \sum_{i} \frac{b_{i}^{D=4} I_{2i}^{D}}{i} + R$$

Integrals are known, task is to determine the coefficients

Integrals tabulated in: Bern, Dixon, Dunbar, Kosower; Ellis, Zanderighi

New Developments in Loop Calculations - 13/28

One-Loop Matrix Elements

Introduction

NNLO

NLO

- The LHC Wishlist
 NLO Calculations
 One-Loop Matrix
- Elements
- $ullet pp
 ightarrow tar{t}bar{b}$
- New Ideas
- Generalized
 Unitarity
- From Boxes to Complete Amplitudes

Implications

Conclusions

Any (massless) one-loop integral can be decomposed into

$$\mathcal{M} = \sum_{i} \frac{d_{i}^{D} I_{4i}^{D}}{i} + \sum_{i} \frac{c_{i}^{D} I_{3i}^{D}}{i} + \sum_{i} \frac{b_{i}^{D} I_{2i}^{D}}{i}$$
$$= \sum_{i} \frac{d_{i}^{D=4} I_{4i}^{D}}{i} + \sum_{i} \frac{c_{i}^{D=4} I_{3i}^{D}}{i} + \sum_{i} \frac{b_{i}^{D=4} I_{2i}^{D}}{i} + R$$

Integrals are known, task is to determine the coefficients

Standard procedure:

- Generate all Feynman diagrams ⇒ many terms
- Translate into equations ⇒ many more terms
- Reduce to known Master integrals ⇒ large cancellations between spurious singularities

$pp ightarrow t ar{t} b ar{b}$

Introduction

NNLO

NLO

- The LHC Wishlist
 NLO Calculations
 One-Loop Matrix Elements
- $ullet pp
 ightarrow tar{t}bar{b}$
- New Ideas
- Generalized
 Unitarity
- From Boxes to Complete Amplitudes

Implications

Conclusions

Important background to $pp ightarrow t ar{t} H$, with $H ightarrow b ar{b}$

left: Bredenstein, Denner, Dittmaier, Pozzorini; right: Bevilaqua, Czakon, Papadopoulos, Pittau, Worek

Introduction

NNLO

NLO

- The LHC Wishlist
- NLO Calculations
- One-Loop Matrix Elements
- $igodolp pp
 ightarrow tar{t}bar{b}$

New Ideas

- Generalized Unitarity
- From Boxes to Complete Amplitudes

Implications

Conclusions

 $\mathcal{M} = \sum_{i} \frac{d_{i}^{D=4}I_{4i}^{D}}{}_{i} + \sum_{i} \frac{c_{i}^{D=4}I_{3i}^{D}}{}_{i} + \sum_{i} \frac{b_{i}^{D=4}I_{2i}^{D}}{}_{i} + R$

Introduction

NNLO

NLO

- The LHC Wishlist
 NLO Calculations
- One-Loop Matrix Elements
- $igodot pp
 ightarrow tar{t}bar{b}$

New Ideas

- Generalized
 Unitarity
- From Boxes to Complete Amplitudes

Implications

Conclusions

$$\mathcal{M} = \sum_{i} \frac{d_{i}^{D=4}I_{4i}^{D}}{i} + \sum_{i} \frac{c_{i}^{D=4}I_{3i}^{D}}{i} + \sum_{i} \frac{b_{i}^{D=4}I_{2i}^{D}}{i} + R$$

Generalized unitarity

Bern, Dixon, Dunbar, Kosower; Britto, Cachazo, Feng

- ⇒ BlackHat CFB, Bern, Dixon, Forde, Febres Cordero, Ita, Kosower, Maitre
- \Rightarrow Rocket Ellis, Giele, Kunszt, Melnikov, Zanderighi

Introduction

NNLO

NLO

- The LHC Wishlist
 NLO Calculations
 One-Loop Matrix
- Elements
- $igodot pp
 ightarrow tar{t}bar{b}$
- New Ideas
- Generalized
 Unitarity
- From Boxes to Complete Amplitudes

Implications

Conclusions

$$\mathcal{M} = \sum_{i} \frac{d_{i}^{D=4}I_{4i}^{D}}{i} + \sum_{i} \frac{c_{i}^{D=4}I_{3i}^{D}}{i} + \sum_{i} \frac{b_{i}^{D=4}I_{2i}^{D}}{i} + R$$

Generalized unitarity

Bern, Dixon, Dunbar, Kosower; Britto, Cachazo, Feng

- $\Rightarrow \texttt{BlackHat} \quad \texttt{CFB, Bern, Dixon, Forde, Febres Cordero, Ita, Kosower, Maitre} \\ \Rightarrow \texttt{Rocket} \quad \texttt{Ellis, Giele, Kunszt, Melnikov, Zanderighi}$
- OPP method

Ossola, Papadopoulos, Pittau

 \Rightarrow CutTools + HELAC

Bevilaqua, Czakon, van Hameren, Ossola, Papadopoulos, Pittau, Worek

Introduction

NNLO

NLO

- The LHC Wishlist
 NLO Calculations
 One-Loop Matrix Elements
- $igodolp pp
 ightarrow tar{t}bar{b}$
- New Ideas
- Generalized
 Unitarity
- From Boxes to Complete Amplitudes

Implications

Conclusions

$$\mathcal{M} = \sum_{i} \frac{d_{i}^{D=4}I_{4i}^{D}}{i} + \sum_{i} \frac{c_{i}^{D=4}I_{3i}^{D}}{i} + \sum_{i} \frac{b_{i}^{D=4}I_{2i}^{D}}{i} + R$$

Generalized unitarity

Bern, Dixon, Dunbar, Kosower; Britto, Cachazo, Feng

- $\Rightarrow \texttt{BlackHat} \quad \texttt{CFB, Bern, Dixon, Forde, Febres Cordero, Ita, Kosower, Maitre} \\ \Rightarrow \texttt{Rocket} \quad \texttt{Ellis, Giele, Kunszt, Melnikov, Zanderighi}$
- OPP method

Ossola, Papadopoulos, Pittau

 \Rightarrow CutTools + HELAC

Bevilaqua, Czakon, van Hameren, Ossola, Papadopoulos, Pittau, Worek

- On-shell recursion at 1 loop CFB, Bern, Dixon, Forde, Kosower
 - \Rightarrow BlackHat CFB, Bern, Dixon, Forde, Febres Cordero, Ita, Kosower, Maitre

Introduction

NNLO

NLO

- The LHC Wishlist
 NLO Calculations
 One-Loop Matrix Elements
- $ullet pp
 ightarrow tar{t}bar{b}$
- New Ideas
- Generalized
 Unitarity
- From Boxes to Complete Amplitudes

Implications

Conclusions

$$\mathcal{M} = \sum_{i} \frac{d_{i}^{D=4}I_{4i}^{D}}{i} + \sum_{i} \frac{c_{i}^{D=4}I_{3i}^{D}}{i} + \sum_{i} \frac{b_{i}^{D=4}I_{2i}^{D}}{i} + R$$

Generalized unitarity

Bern, Dixon, Dunbar, Kosower; Britto, Cachazo, Feng

- $\Rightarrow \texttt{BlackHat} \quad \texttt{CFB, Bern, Dixon, Forde, Febres Cordero, Ita, Kosower, Maitre} \\ \Rightarrow \texttt{Rocket} \quad \texttt{Ellis, Giele, Kunszt, Melnikov, Zanderighi}$
- OPP method

Ossola, Papadopoulos, Pittau

\Rightarrow CutTools + HELAC

Bevilaqua, Czakon, van Hameren, Ossola, Papadopoulos, Pittau, Worek

■ On-shell recursion at 1 loop CFB, Bern, Dixon, Forde, Kosower

 \Rightarrow BlackHat CFB, Bern, Dixon, Forde, Febres Cordero, Ita, Kosower, Maitre Generalized unitarity and recursion reuse amplitudes, not Feynman diagrams \Rightarrow excellent scaling with number of external legs

Generalized Unitarity

Introduction

NNLO

NLO

- The LHC Wishlist
- NLO Calculations
- One-Loop Matrix
 Flements
- $\bullet pp \rightarrow t\bar{t}b\bar{b}$
- New Ideas
- Generalized Unitarity
- From Boxes to Complete Amplitudes

Implications

Conclusions

Determine coefficients without doing explicit reduction by generalized unitarity: put internal propagators on-shell

$$rac{1}{p^2+i\epsilon}
ightarrow i\delta^+(p^2)$$

Thus for boxes, the coefficient collapses into a product of 4 tree amplitudes (in D = 4) ($\int d^4 l \delta^+ (l_1^2) \delta^+ (l_2^2) \delta^+ (l_3^2) \delta^+ (l_4^2)$)

New Developments in Loop Calculations - 16/28

From Boxes to Complete Amplitudes

Introduction

NNLO

NLO

- The LHC Wishlist
 NLO Calculations
- One-Loop Matrix Elements
- $igodot pp
 ightarrow tar{t}bar{b}$
- New Ideas
- Generalized
 Unitarity
- From Boxes to Complete Amplitudes

Implications

Conclusions

Triangle and bubble coefficients are slightly more complicated – left-over integrals (< 4 delta-functions)

- \Rightarrow use special parametrization to extract these
- at integrand level OPP
- or at integral level

Ossola, Papadopoulos, Pittau

Forde - BlackHat; Rocket

From Boxes to Complete Amplitudes

Introduction

NNLO

- NLO
- The LHC Wishlist
- NLO Calculations
- One-Loop Matrix
 Flements
- $\bullet pp \rightarrow t\bar{t}b\bar{b}$
- New Ideas
- Generalized
 Unitarity
- From Boxes to Complete Amplitudes

Implications

Conclusions

Triangle and bubble coefficients are slightly more complicated – left-over integrals (< 4 delta-functions)

- \Rightarrow use special parametrization to extract these
- at integrand level OPP
- or at integral level

Ossola, Papadopoulos, Pittau

Forde - BlackHat; Rocket

Rational terms:

- Keep full D-dimensional information in generalized unitarity
 Ellis, Giele, Kunszt, Melnikov, Zanderighi; Badger
- Rational recursion from lower-point one-loop terms

CFB, Bern, Dixon, Forde, Kosower

Special Feynman rules in OPP approach at integrand level van Hameren, Ossola, Papadopoulos, Pittau

W + 3 Jets - Searches with MET

Introduction

NNLO

NLO Calculations • One-Loop Matrix Elements $igoplus pp ightarrow t \overline{t} b \overline{b}$ New Ideas Generalized Unitarity From Boxes to Complete **Amplitudes**

Implications

Conclusions

Left: W + 3 jets at the Tevatron, comparison to CDF data Right: W^+ + 3 jets at the LHC (14 TeV)

Ita, Kosower, Maitre

Excellent Scaling with External Legs

Introduction

NNLO

NLO

The LHC Wishlist
 NLO Calculations

- One-Loop Matrix Elements
- $igodolp pp
 ightarrow tar{t}bar{b}$
- New Ideas
- Generalized Unitarity
- From Boxes to Complete Amplitudes

Implications

Conclusions

Giele, Zanderighi

Implications

Introduction

NNLO

NLO

Implications

- Lessons Learned from NLO: K-Factors
- Lessons Learned from NLO: Scales I
- Lessons Learned from NLO: Scales II
- Lessons Learned from NLO: IR Safety

Conclusions

New Developments in Loop Calculations - 20/28

Lessons Learned from NLO: K-Factors

 $\mathcal{K}'(\mu_0)$

1.21

1.43

1.29

1.26

1.24

1.37

2.10

2.33

2.13

 $\mathcal{K}(\mu_0)$

1.15

1.21

0.89

1.33

1.40

0.97

0.98

1.72

1.47

1.15

CO	Typical scales		Tevatron K-factor			
Introduction	Process	μ_0	μ_1	$\mathcal{K}(\mu_0)$	$\mathcal{K}(\mu_1)$	κ′
NNLO	W W+i	m_W	$2m_W$ n ^j	1.33	1.31 1 20	1
Implications Lessons Learned 	W+jj WW+jj WW+j	$egin{array}{c} m_W \ m_W \ m_W \end{array}$	$egin{array}{c} p_T^{ m j} \ p_T^{ m j} \ 2m_W \end{array}$	1.16 1.19	0.91 1.37	1
from NLO: K-Factors ● Lessons Learned from NLO: Scales I	$tar{t}$ $tar{t}$ +j	$egin{array}{c} m_t \ m_t \end{array}$	$2m_t \ 2m_t$	1.08 1.13	1.31 1.43	1
 Lessons Learned from NLO: Scales II Lessons Learned 	<i>ь</i> Б Н	$rac{m_b}{m_H}$	$2m_b \ p_T^{ m j}$	1.20 2.33	1.21 –	2 2
from NLO: IR Safety	H+j H+jj	$egin{array}{c} m_H \ m_H \ m_H \end{array}$	$egin{array}{c} p_T^{ m j} \ p_T^{ m j} \ p_T^{ m j} \end{array}$	2.02	-	2

Conclusions

• Large color annihilation (e.g. $gg \rightarrow H$) \Rightarrow large K-factor

■ Addition of legs in final state ⇒ smaller K-factor

LHC K-factor

 $\mathcal{K}(\mu_1)$

1.05

1.32

0.88

1.40

1.59

1.29

0.84

 $\mathcal{K}'(\mu_0)$

1.15

1.42

1.10

1.42

1.48

1.10

2.51

2.32

1.90

Lessons Learned from NLO: Scales I

Fixed scales are in general not a good idea

- Lessons Learned from NLO: **K-Factors**
- Lessons Learned from NLO: Scales I
- Lessons Learned from NLO: Scales
- Lessons Learned from NLO: IR Safetv

Conclusions

Ita, Kosower, Maitre

Lessons Learned from NLO: Scales I

Fixed scales are in general not a good idea

NNLO

NLO

- Lessons Learned from NLO: K-Factors
- Lessons Learned from NLO: Scales I
- Lessons Learned from NLO: Scales II
- Lessons Learned from NLO: IR Safety

Conclusions

Lessons Learned from NLO: Scales II

This plot actually doesn't make sense:

Introduction

NNLO

NLO

Implications

- Lessons Learned from NLO: K-Factors
- Lessons Learned from NLO: Scales I
- Lessons Learned from NLO: Scales
- Lessons Learned from NLO: IR Safety

Conclusions

BlackHat + Sherpa: CFB, Bern, Dixon, Forde, Febres Cordero, Gleisberg, Ita, Kosower, Maitre

Introduction

NNLO

NLO

Implications

- Lessons Learned from NLO: K-Factors
- Lessons Learned from NLO: Scales I
- Lessons Learned from NLO: Scales II
- Lessons Learned from NLO: IR Safety

Conclusions

BlackHat + Sherpa: CFB, Bern, Dixon, Forde, Febres Cordero, Gleisberg, Ita, Kosower, Maitre

Comparison of infrared-unsafe JetClu (data) with infrared-safe SISCone (BlackHat+Sherpa)

NNLO

NLO

Implications

- Lessons Learned from NLO: K-Factors
- Lessons Learned from NLO: Scales I
- Lessons Learned from NLO: Scales II
- Lessons Learned from NLO: IR Safety

Conclusions

Salam, Soyez

Conclusions and Outlook

Introduction

NNLO

NLO

Implications

Conclusions Conclusions and Outlook Omissions Outlook

Progress at NNLO

fully differential distributions, several more new calculations soon to be completed

Tremendous progress at NLO

Feynman diagrams: first $2 \rightarrow 4$ results New methods reuse amplitudes instead of Feynman diagrams via generalized unitarity and recursion, OPP reduction

- General purpose NLO amplitude codes being developed, progress toward agreement on common interface at Les Houches 2009 ⇒ event generators incl. parton showers at NLO?
- Lesson learned from NLO calculation for LO simulation: choose your scale wisely!
- New jet algorithms Whichever one you use, please choose an infrared safe one!

Omissions

Introduction

NNLO

NLO

Implications

Conclusions

Conclusions and Outlook

Omissions

Outlook

Parton Distribution Functions

- Shower algorithms, incl. at NLO
- All order conjecture for structure of infrared divergences of amplitudes
- Resummation
- Studies of jet substructure to identify heavy particles

Omissions from the listed omissions

Outlook

Introduction

NNLO

NLO

Implications

Conclusions

- Conclusions and Outlook
- Omissions
- Outlook

