Forward Region Instrumentation

Wolfgang Lohmann

DESY

On behalf of the FCAL collaboration

Forward Region, ILD Detector

Content

Recent Developments:

- Sensor Prototyping
- ASIC Development and Test
- -System test

BeamCal Sensors, GaAs

n-type (Te or Sn - shallow donor) GaAs grown by Liquid Encapsulated
 Czochralski (LEC) method in Siberian
 Institute of Physics and Technology
 (Tomsk, Russia)
 low-ohmic material, filling the electron
 trapping centers EL2+

- Cr (deep acceptor) diffusion
- -> high-ohmic

Thicknesses 150 - 200 µm

Metallization:

V (30 nm) + Au (1 μ m) from both sides

Irradiation in a 10 MeV electron beam, Doses up to 1.1 MGy

Initial n-GaAs	Fabrication method
N₀1, n ≈ (1 -1.5)*1017 cm-3, Te	Diffusion of Cr under temperatureT2
№2, $n \approx (5 - 6)*10^{16} \text{ cm}^{-3}$, Te	Diffusion of Cr under temperature Tm
№3, $n \approx (1 - 3)*10^{16} \text{ cm}^{-3}$, Sn	Diffusion of Cr under temperature T1
№4, $n \approx (2 - 5)*10^{16} \text{cm}^{-3}$, Te	p-v-n- structure*

Notice T1 < Tm<T2.

* - presence in the detector n- type low-resistance domain, all other detectors $N_{2}1$, 2, 3 had structure m-i-m: metal- insulator (high-resistance GaAs) -metal.

BeamCal Sensors, GaAs

Up to 500 kGy a mip signal is clearly seen

Sensors with a lower concentration of shallow donor and Cr as deep acceptor show better rad. tolerance

600

800

Dose, kGy

1200

1000

1400

Ť ĮŽ

400

200

0.2

BeamCal Sensors, Diamond

sCVD diamond (E6), 5x5x0.3 mm³
Irradiated in 2007 up to 5 MGy
2008: up to 10 MGy

New set-up, for switching polarity during the measurement

BeamCal Sensors, Sapphire

Band gap: 9.9 eV

(diamond: 5.5 eV, Si: 1.12 eV

Single crystal, 1x1 cm2,

cut 001

Wafer: 30 cm diameter)

Metallisation:

50/50/200 nm Al/Ti/Au

Ratio of the detector and Faraday cup currents

Charge collection efficiency: few %

~ 30 % of the initial charge collection efficiency after 12 MGy

Sensor prototypes (LumiCal)

"Cracow-Design"

- High resistivity n-type Si
- 1,7mm p+ strips with an Al-metallization
- Backplane: n+ implant and an Al-metallization
- 3 Guard rings

Hamamatsu S10938-8380

I(V) and C(V) measurements on Probestations in Tel Aviv, Cracow and DESY

Sensor prototypes (LumiCal)

ASIC development, BeamCal

Design of a 32 channel prototype currently ongoing, First prototypes (smaller number of channels) will be ready in December

- Dual gain charge amplifier switchched capator filter
- ADC ASIC 10 bit successive approximation ADC (3.25 MS/s)
- Additional 8 bit low latency output (beam diagnostics

ASIC development, LumiCal

8 channel preamplifier ASIC, lab tests, matches the requirements

- Noise_{phys}[aC] = $522 + 2.08 \cdot C_{in}[pF]$
- Noise_{cal}[aC] = $48 + 4.65 \cdot C_{in}[pF]$

Power consumption per channel: 8.9 mW

Ready for tests with sensors!

Mode	Gain	Noise@50pF	Linearity	Rate	Crosstalk
	[mV/fC]	[fC]	[pC]	[MHz]	[%]
Physics	0.107	0.62	10	3	≈1
Calibration	≈20	0.28	0.035	2.5	≈0.1

- Design of assembly with a sensor
- Test in the lab and testbeam
- Redesign after these tests

ASIC development, LumiCal

One channel ADC ASIC (differential pipeline architecture)

- New 10 bit ADC fully functional
- Stable operation up to 25 MHz
- Good static performance (DNL, INL, ENOB)
- Dynamic measurements just started
- Clock and power switching tests
- Preparation of a multichannel version

System Test in a beam

Template of a readout board, to be instrumented with FE ASICS

Readout/Fanout of sensors

- fine pitch PCB, (100...200 μ m for current few channel FE chips)
- flexible PCB to be designed.
 matters of crosstalk & capacitive load
- wire bonding or bump bonding to pads
 (wire bonding needs ~ 3mm gap between absorber tiles; conductive glueing also discussed)
- wire bonding to FE chip
- Silicon and GaAs sensor samples

System Test in a beam

Template of a readout board, to be instrumented with FF ASICS

Readout/Fanout of sensors

- state of the art fine pitch PCB, $(100...200\mu m$ for current few channel FE chips
- matters of crosstalk & capacitive load
- wire bonding or bump bonding to pads
 (wire bonding needs ~ 3mm gap between absorber tiles; conductive glueing also discussed)
- wire bonding to FE chip
- Silicon and GaAs sensor samples
- Beam test planned 2010

Conclusions

• Investigation of the radiation hardness of GaAs, diamond and Sapphire . up to 10 MGy. No baseline material for BeamCal so far

diamond: too expensive

GaAs: rad. tolerant up to 1 MGy

Sapphire: studies just started

- Prototytping of Si sensors for Lumical successful
- •FE ASICS ready for test with sensors
- System test in preparation
- * ADC ASICS prototypes under test

Goal up to 2012: demonstrate the functionality of a sensor plane sector