

VTX Design Strategy for 2009–2012

Marc Winter (IPHC/Strasbourg)

on behalf of IPHC/Strasbourg, DESY-Hamburg, Univ. Oxford, Univ. Bristol, ...

• Questions addressed :

- * How shall the high precision of the pixel sensors be preserved while integrating them in VTX ?
- * How will the pixel sensor R&D continue ?
- * How to refine the VTX design w.r.t. physics requirements ?
- Framework
- Expected Contributions

ILD VTX R&D Goals

Sensor requirements defined w.r.t. ILD VTX geometries

- * 2 alternative geometries :
 - ♦ 5 single-sided layers
 - 3 double-sided layers (mini-vectors)
- * continuous (power cycled) or delayed (low power) read-out

Prominent specifications :

* time stamping target values :

SL1/SL2 /SL3 /SL4 /SL5

 $\diamond~$ single-sided : 25 / 50 / 100 / 100 / 100 μs

st $\sigma_{sp}\lesssim$ 3 μm

DL1 / DL2 / DL3 \diamond double-sided : 25–25 / 100–100 / 100–100 μs

- st full ladder material budget in sensitive area (\lesssim 50 μm thin sensors) :
 - \diamond single-sided : < 0.2 % X₀ \diamond double-sided : \sim 0.2 % X₀
- * $P_{diss} \lesssim 0.1-1 \text{ W/cm}^2 \times 1/50 \text{ duty cycle } (5, 1 \text{ ms long, bunch trains/s})$ Alternative: low P_{diss} during train, followed by very slow (\equiv low power) read-out

DDD R&D on swift, high resolution, sensors and ultra-light (double-sided) ladders

Question 1: How to preserve the high precision of pixel sensors while integrating them in VTX ?

- material budget of ladder versus stability against air flow and power cycling
- alignment : hardware and software tools
- track linking towards SIT & FTD
- added value of double-sided ladders w.r.t. single-sided ones

Question 2 : How will the pixel sensor R&D continue ?

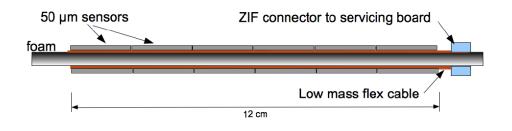
• validate \sim completely (real scale, fast, thin, accurate, ...) \geq 1 technology by 2012 :

2D CMOS sensors, ISIS, FPCCD, etc.

- consolidate technologies with highest potential ("2nd generation" sensors): 3D sensors, etc.
- follow the potential emergence of technological improvements ...

Question 3 : How to refine the VTX design w.r.t. physics requirements ?

• incorporate results of questions 1 and 2 in the design / concept


 $\triangleright~$ is $\sigma_{sp}\sim$ 3 μm good enough once system integration limitations are accounted for ?

- refine physics simulations and final state reconstruction :
 - ▷ flavour tagging accounting for VTX integration timeS vs BG, 2-sided ladders, ...

Framework

- PLUME collaboration:
 - * R&D on 2-sided ladder concept (MIMOSA. ISIS. ...)
 - st total material budget \sim 0.2–0.3 % X $_0$
 - investigate double-sided ladder
 feasibility and performances

- Hadron Physics 2 (accepted FP7 project):
 - * WP-26: development of sensors embedded in ultra-thin polymerised film
 - * goal: < 0.1 % X $_0$ for sensors \oplus flex \oplus film
 - \Rightarrow may match cylindrical surfaces \Rightarrow mounted on beam pipe ?????
- AIDA (FP7 proposal):
 - * investigate ladder alignment strategy
 - * linking to SIT & FTD (related to double-sided ladder)
 - * investigate ladder properties (power cycling, cooling, etc.)
 - * assess added value of double-sided ladders w.r.t. single-sided ones

- Laboratories involved:
 - * PLUME: IPHC-Strasbourg, Univ. Oxford, Univ. Bristol, DESY, Univ. Warsaw
 - * Sensor R&D: IPHC (+ IRFU/Saclay ?), Oxford, Japan ????, Bergamo ?, etc.
 - * HP-2: IPHC (partnership with IKF/Frankfurt for CBM expt. at FAIR/GSI)
 - * AIDA (prelim.): IPHC, Oxford, Bristol, DESY, Univ. Geneva, Warsaw
- Current status:
 - * Mainly hardware expertise available
 - * Software tasks coverage seems critical
 - * Funding uncertain (may come ?)