US Cavities Status and Plan

Mark Champion 01 October 2009

- Process and test new nine-cell cavities as they arrive from vendors
 - Increase yield data set
 - Increase experience and throughput at ANL/FNAL
 - Gain new insights regarding performance limitations
- Increase our understanding of performance limitations and develop manufacturing and processing improvements via:
 - Nine-cell processing and testing
 - Single-cell R&D
 - R&D on materials and processes
- Continue to develop cavity manufacturing in North America
 - Purchase more cavities
 - Provide feedback on performance and limitations
 - Work with vendors to improve understanding of limitations and mitigation techniques
- Provide high-performance cavities for cryomodule fabrication
 - FNAL CM2, CM3, ..., and S1-Global

- Perform cavity repairs via local grinding, tumbling, e-beam or laser melting, and cell replacement
- Develop improved materials and processes
 - Seamless tubes for hydroforming
 - Tumbling and chemical-mechanical polishing
 - Vertical EP
 - Rinsing optimization
- Develop alternative cavity technologies
 - Large grain
 - Hydroforming
 - Alternate shapes
- Develop instrumentation and diagnostics
 - T-mapping, 2nd-sound
 - Radiation monitoring / mapping
- Carry out the collaborative R&D programs funded through DOE (Bill Weng)
- Implement infrastructure improvements
- Reduce costs

Summary of Cavity Performance in the Americas Region

:lr

Americas

- Successfully commissioned single-cell cavity processing in Q2 FY09
- Commissioning of nine-cell cavity processing was progressing, but halted end of May due to water contamination problems (see talk by Allan Rowe)
- Cavity A14 damaged in early August resulting in cavity handling stand-down for ~2 months
- Fermilab VTS2-3 civil construction started early September
 - Expect to resume operation of VTS1 end of October
- These events have significantly delayed processing and testing of cavities at Argonne & Fermilab (~5 months)
- Will focus on ramping up throughput to ~1 process and test cycle per week
- Staff increases at ANL facility are proceeding
 - 2 ANL engineering associates (1 filled, 1 pending)
 - 2 FNAL technicians (1 filled, 1 open)

• ART budget for processing & testing at Argonne & Fermilab:

Argonne	# cycles	cost k\$
9-cell EP	23.0	345.0
Single-cell EP	10.0	60.0
Processing facility maintenance		46.0
Total		451.0
Fermilab		
9-cell test cycles	20.0	300.0
Single-cell test cycles	10.0	150.0
Total		450.0

- Stimulus funding of ~\$890k will go to Argonne via Fermilab to fund labor at the Argonne facility
- Additional processing & testing cycles will be funded via FNAL SRF budget

- ~60% of budget allocated to processing and testing of nine-cell cavities → 30 cycles
- Remainder distributed as follows:

Jefferson Lab	cost k\$
Cavity Coordination & Management	100.0
Cavity Fabrication	
 new cavity fabrication (PK) 	125.0
Cavity Processing & Vertical Testing	
- 30 EP cycles + cabinet maint. (RG)	1000.0
Cavity Gradient R&D	
 cleaning and surface prep R&D (CR) 	200.0
 off-line EP development (RG) 	100.0
- large grain studies (PK)	100.0
Cavity & Cryomodule Component R&D	
- Alt. cavity fab. (BR)	100.0
Total	1725.0

- Additionally, stimulus funding of ~\$900k will go to Jefferson Lab via Fermilab for infrastructure improvements
 - EP system improvements (heat exchanger, cavity cooling, spares)
 - Upgraded HPR system
 - Ultrapure water system capacity improvement
 - VTA capability improvements (buffer dewar, controls, RF improvements)
 - Next generation EP infrastructure development stepping stone to ICP

- Cornell is presently installing a cryogenic plant using NSF funds
 - Plan to commission in Q2 FY10
 - Will greatly enhance testing capabilities due to helium recovery
- Plans for FY10 include the following items:

Cornell		
Management & travel		50.0
9-cell T-Mapping studies	5.0	153.3
9-cell cavity repair	5.0	150.0
2nd sound detection on dressed cavities	2.0	80.0
Single-cell process & test	8.0	70.4
Vertical EP development		146.3
Total		650.0

Summary of FY10 ART Budget for Cavities

Argonne	# cycles	cost k\$	Jefferson Lab	cost k\$
9-cell EP	23.0	345.0	Cavity Coordination & Management	100.0
Single-cell EP	10.0	60.0	Cavity Fabrication	
Processing facility maintenance		46.0	- new cavity fabrication (PK)	125.0
Total		451.0	Cavity Processing & Vertical Testing	
			- 30 EP cycles + cabinet maint. (RG)	1000.0
Fermilab			Cavity Gradient R&D	
9-cell test cycles	20.0	300.0	- cleaning and surface prep R&D (CR	200.0
Single-cell test cycles	10.0	150.0	- off-line EP development (RG)	100.0
Total		450.0	- large grain studies (PK)	100.0
			Cavity & Cryomodule Component R&D	
Cornell			- Alt. cavity fab. (BR)	100.0
Management & travel		50.0	Total	1725.0
9-cell T-Mapping studies	5.0	153.3		
9-cell cavity repair	5.0	150.0	Grand Total	3276.0
2nd sound detection on dressed cavities	2.0	80.0		
Single-cell process & test	8.0	70.4		
Vertical EP development		146.3		
Total		650.0		

- FY10 budget planning assumed no increase in ART budget
- Distributions to Labs same as in FY09

Americas

Cavity Inventory and Procurement Plan Americas •

Tesla-shape nine-cell cavitie	es	
Description	No. Cavities	Status
AES 1-4	4	tested
AES 5-10	6	received; testing in progress
AES 11-16	6	due Dec 2009
Accel 6-9	4	tested
Accel 10-17	8	received Mar 2008; testing in progress
Accel 18-29	12	at Accel for installation of Ti rings / due late CY09
Jlab fine-grain 1-2	2	fabrication complete; testing in progress
Niowave-Roark 1-6	6	2 due Jan 2009 / 4 due May-June 2010
Stimulus Procurement	40	order in progress / expect ~12 cavities in Q1 FY11
Total	88	
Already Received	24	
Tesla-shape single-cell cavities		
Description	No. Cavities	Status
AES 1-6	6	tested at Cornell; further testing in progress
Accel 1-6	6	received Dec 2008; testing in progress
Niowave-Roark 1-6	6	tested at Cornell; further testing in progress
PAVAC	6	due Q2 FY10
Total	24	
Already Received	18	

:lr

Proposed Prioritization for JLab Request

- 1. TB9AES008: send clean/sealed to Fermilab immediately
- 2. A8*: tuning, USR&HPR, test
- 3. TB9AES009: optical inspection, tuning, "final" process, test
- 4. TB9ACC016: full treatment/test of fresh cavity
- 5. TB9AES010: full treatment/test of fresh cavity
- 6. TB9AES007: full treatment/test of fresh cavity; some risk from HOM void
- Out of 10 cavities plus backups for CM2 and S1G
 - 3 cavities are ready for dressing: AES002*, TB9ACC011, TB9ACC013
 - 6 additional cavities reasonably likely to make 31.5 MV/m could be available for dressing by end of Dec. 2009
 - 2 of the 9 are the long-short design preferred for S1G
- Additional one primary and ~five backup cavities required, including at least one more long-short design

* Means long-short cavity design

2.Sep.2009

CMGinsburg CM2/S1G Cryomodule Cavity Plan

Summary of Plans for CM2 & S1-Global Cavities

- We are planning to have RI (Accel) perform bulk electro-polishing on six (of twelve) new cavities because
 - saves time and wear-and-tear on equipment at laboratories
 - is consistent with our plans to perform bulk EP in industry
 - has been successfully demonstrated at DESY
 - reasonable cost and schedule proposal
- However, there is some concern that this introduces yet another variable into the S0 program
- AES would like to establish bulk EP capabilities with assistance from the ART program (Cornell)
 - Should it be vertical or horizontal EP?
- There are many related activities that are being supported through economic stimulus (ARRA) funds and/or FNAL SRF funds
 - e.g., hydrogen degassing furnace at FNAL, industrial EP development, cavity procurements, chemical-mechanical polishing, ...

- FY10 ART budget and plan exists will no doubt evolve as the year progresses
- Stimulus funding provides additional support at Argonne, Fermilab, and Jefferson Lab
- SRF funding at Fermilab will also be utilized to some extent on these activities
- Planning includes provision of cavities for cryomodules at Fermilab and S1-Global at KEK
- Plan to process and test up to ~20 new cavities by middle of calendar year 2010