CLIC Simulation Software – Overview and Plans

ALCPG, Albuquerque September 30, 2009

Christian Grefe

On behalf of the Linear Collider Detector Group @ CERN

Outline

- Experience with SiD software
- Experience with ILD software
- General Issues

Geometry Description

- Modified SiD02 to CLIC requirements
 - increased inner coil radius to allow for more HCal thickness
 - Changed HCal barrel material to tungsten
 - Increased number of HCal layers to 70
 - Changed vertex detector to avoid pair background: r_inner
 = 30 mm
- CompactXML is very convenient

LFCI Jet Tagging Studies

- Recently started study of flavor tagging using LCFI
- Only FastMC until now
- Study impact of modified vertex detector
- Automatization of neural net training
- Next steps:
 - Full simulation
 - Inclusion of beam-background
 - Optimization for 3 TeV
 - Use in physics analysis

Tomáš Laštovička

Tracking Studies

- Tracking algorithms work out of the box with SiD standard strategies
- Tracking performance goal reached
- Low tracking efficiency for high p needs to be investigated
- Next steps
 - Optimize strategies
 - Add with beam-background time stamping?

Tungsten HCal Studies

- Simulation of various materials and various sampling ratios
- Optimization for available space (inner coill radius)
 - \sim 7.5 λ Hcal of \sim 10 mm W + 5 mm Scint (\sim 70 layers)
- Impact of tail catcher
- Next steps
 - Need to investigate impact on PFA performance
 - Simulation studies for a W HCal prototype

Peter Speckmayer & C.G.

ILD Software

Experience with Mokka Geometry

- First Model was set up with help from Paulo Mora de Freitas
- Later:
 - Some code changes to include different material for HCal, number of layers in BeamCal and HCal
 - Changes to Database to Edit:
 Crossing angle, vertex detector,
 beam pipes from IP to the end,
 masking
 - Also fixed some gaps/overlaps for ILD00_fwp01

Beam-Beam-Background Simulations

- Simulate e+e- pairs from beambeam-background
- Analyse with self-made Marlin processor
- Places were particles back-scatter into detector identified (top)
- Geometry changed to reduce backscattering into detector (bottom)
- Currently all BeamCal and LumiCal studies are done using Mokka & Marlin

Full Simulation & Reconstruction @ 3 TeV

- Works in principle
 - Minor PFA fix by Mark Thomson
 - Needed to remove upper limit of 500 GeV per Track
- Issues because of γγ-background
 - When overlaying background 50 Bx is maximum
 - Need to remove background before using jet-finder (p, > 5 GeV)
 - Tracking efficiency needs to be improved
- Need to improve lepton id, especially τ

Jean-Jacques Blaising, Marco Battaglia

General Issues

Particle Flow Algorithm

 Also for CLIC energies PFA seems to be a viable option (see talk by Mark Thomson)

- SiD: uses Iowa PFA
- ILD: uses PandoraPFA

- IowaPFA works at 3 TeV, but presently too slow
- PandoraPFA works at 3 TeV but,
 - some speed issues
 - some memory issues
 - resolution for 3 TeV can most likely be optimized

New Pandora PFA Design Goals

- decoupled from detector and analysis framework
 - connection to outside world via API
 - independent from Marlin, org.lcsim, ...
 - Independent from detector particularities (TPC, Si-Tracker, ...)
- flexible framework
 - "Algorithms"
 - for clustering
 - for producing particle flow objects
 - independent from other algorithms
 - user can add new algorithms
 - · easily configurable
- use "lessons learned" from existing PFAs (in particular Pandora)
 - first re-program the Pandora functionality and performance, then enhance with new algorithms

Mark Thomson, John Marshall & Peter Speckmayer

Common Geometry Description

- Description of shapes, materials and sensitive regions
- Needs to interface to
 - Full simulation programs
 - Fast simulation programs
 - Reconstruction algorithms
 - Visualization tools
- Allow for detector misalignment
- Long term project
 - CERN fellow since September 09 working on this project

Computing Infrastructure

- Current Status
 - Generator Files: AFS repository with http access (hard to maintain) http://lcd.web.cern.ch/LCD/Documents/GeneratorFiles.html
 - Simulation Files: CASTOR
 - DST: AFS
 - Computing: CERN batch sytem
- Future Plans
 - Move to Grid: Computing and storage
 - Set up central file catalog
- Technical student starting in November 09

Conclusion

- The ILC software frameworks are quite mature
- Helped us greatly to start working right away
- Wide range of studies ongoing looking at critical issues for CLIC
- Some issues to be solved
 - Mostly in high occupancy environments when overlaying many Bx
- Most important is to get PFA working for both frameworks with reasonable performance in order to have comparable benchmark studies for the CLIC CDR in 2010
 - Iowa group is aware of and working on the problem, we are looking forward to this

Acknowledgements

- Thanks to ILD and SiD collaborations for their support
 - Accessing and setting up of their simulation and reconstruction tools
 - Software modifications necessary to use the tools at 3 TeV events
 - Stimulating discussions

We hope this good collaboration will continue!