Event Reconstruction in SiD02 with a Dual Readout Calorimeter

Steve Magill Argonne National Laboratory

- **Detector Geometry**
- **EM Calibration**
- **Cerenkov/Scintillator Correction**
- Jet Reconstruction Performance

Dual Readout Detector Geometry

Muons Cerenkov Collections Scintillator Collections Cerenkov EM, HAD Ceren EM All Hit F Ceren EM Hit F 700 **Edep HcalBarrHits** 600 **Ceren HcalBarrHits** 500 mips 400 300-200-1.8 x10²⁻⁰ 0.8 1.0 1.6 aida7271179659792746053 Ceren HAD All Hit 2,000 Ceren HAD Hit F Deltas 1,800 1.600 1 400 1 200 1,000 800 600 **Edep EcalBarrHits Ceren_EcalBarrHits** 400 200 1.8 0.4 0.6 0.8 1.0 1.4 1.6

DigiSim - 1/2 MeV threshold (scin, *ceren*), 100 ns timing cut

Scintillator EM, HAD

Scin EM All Hit E dE/dx ~ 27 MeV Scin EM Hit E 1.200-Ceren_HcalBarrDigiHits Edep HcalBarrDigiHits 3 cm of BGO mips 0.02 0.05 0.08 0.04 0.06 0.09 aida7271179659792746053.a Scin HAD All Hit E Scin HAD Hit E Deltas 1,600 1,400 1,200 800 600 Edep EcalBarrDigiHits Ceren EcalBarrDigiHits 400 200 0.00 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 3 J.n. Wayili - ANL

e+e- -> ZZ -> vvqq @ 500 GeV

Electron Calibration for Scintillator, Cerenkov

Cerenkov/Scintillator Correction for Hadrons

S/E slices in em fraction (C/S) bins

Corrected Scintillator signal for pions using P3 Polynomial

Ch Corrected Scin ESum p3 340 T gauss gauss_1 320qauss 2 300sum 280-Ch Corrected Scin ESum p3 Entries : 4339 260-11.436 $\sigma/E \sim 0.08$ Mean : 6.2671 Rms : 240gauss 220mean: 5.0367 0.39153 sigma : 200 gauss_1 mean: 9.7071 180sigma : 0.72102 160 gauss_2 20.027 mean : 140+ 0.97878 sigma : $\sigma/E \sim 0.07$ 120 sum 5.0367±0.010 me 100+ 39153±0.00796 9.7071±0.022 80-.72102±0.0134 20.027±0.029 60 **997**7878±0.0211 40- $\sigma/E \sim 0.05$ 20-

12

10

14

S.R. Magill - ANL

16

18

20

22

E (GeV)

24

0-

6

8

P3 Corrected Pions

Jet Corrections in Dual Readout Detector

DiJet Mass : e+e- -> ZZ -> qqvv @ 500 GeV

PFA Possibility? - MC Particle Contribution to DR Cal Cells Scintillator Hit Collections

Cerenkov Hit Collections

PFA in Dual Readout Calorimeter

PFA Template developed for SiD and variants :

Fully modular construction

Common IO for all modules :

Mip-finding/Track Endpoint, Cluster Algorithms, Cluster pointing, Core cluster matching, Track-Shower association, Cut-based photon ID, H-Matrix photon ID, Neutral hadron finding

All modules run on both Dual Readout collections with zero -> minimal modifications

First use of PFA : Mip-finder Track endpoint determination $-> \Delta M$ correction from charged particles in event (see Adam Para's talk later) or per jet

Same parameters as for SiD, only modification was to change collection names

20 GeV pion shower in Dual Readout Calorimeter

Interaction Layer Comparison

Interaction layer determined by either 0 or multiple hits in layer in a window defined by the position of extrapolated track ~ 1 layer deeper using Cerenkov hits

Difference between Mip and Track Endpoints

Both Mip EPs shallower than track EP, but average Cerenkov Mip EP closer to track endpoint, again by 5 cm which is 1 layer in the ECAL

Mip Cluster compared to Hit Collections

Cerenkov hits (including mip cluster) Scintillator hits

DiJet Mass : e+e- -> ZZ -> qqvv @ 500 GeV

Dijet Mass Diff

DiJet Mass : e+e- -> ZZ -> qqvv @ 500 GeV

Nearest Neighbor Clustering

Scintillator Clusters

Cerenkov Clusters

Clusters Associated with Charged Particles (Tracks)

Mip clusters

Track-associated clusters

Uses : Core Cluster Algorithm, Cluster-Pointing Algorithm, E/P, etc.

S.R. Magill - ANL

Photon Clusters and Merged Clusters

Merged Scintillator Clusters

Photon Clusters

Cluster correction – can use merged cerenkov clusters linked with merged scintillator clusters to apply polynomial correction

S.R. Magill - ANL

~ Z-Pole performance – C/S + PFA Mip-finder 104 GeV (Total E) Zs @ 90 degrees, Z -> qq

Detector – CCAL002 CAL Threshold – 1/50 mip CAL Timing cut – 100 ns

sigma/M = 0.026

Reconstructed Z mass from dijets (fixed 2-jet mode)

Ceren Corrected Clusters, Bfield Corrected DiJet Mass

Individual cluster (nearest-neighbor) C/S corrections Jet ΔM correction from PFA Track endpoints

Summary

- Revised compact.xml and DigiSim to accommodate dual readout calorimeter
- -> 2 hit collections per readout volume
- > Applied independent thresholds and timing cuts to both collections
- Calibrated Scintillator and Cerenkov hit collections with electrons
- Determined C/S correction polynomial for hadrons by plotting S/E vs C/S for pions
- > Applied polynomial corrections to jets and clusters to obtain dijet mass
- \succ Used PFA Mip-finder to determine track endpoint and calculate ΔM correction per jet

Plans

Will continue use of PFA modules to associate tracks with calorimeter clusters, replacing the cal clusters with the track 4-vector in jet finder -> reduced ΔM correction per jet

Continue to improve performance and extend to higher e⁺e⁻ CM and higher jet energies

Ultimately determine optimal mix of C/S corrections and PFA applications

PFA Template

Same algorithm (code) used on DR and SiD detectors -> can directly compare PFA performance using same code in different detectors