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ILC HCal Parameters

 SiD (LoI version)

 HCAL
 Rmin = 141 cm, Rmax = 253 cm

 40 layers of Steel/Gas (2.0 cm + 0.8 
cm)

 λ = 5.1 , X0 = 46.5

 Readout: 1.0 cm x 1.0 cm digital
 12 fold

 Coil
 Rmin = 255 cm, Rmax = 338 cm

 B = 5.0 T

 ILD (LoI version) 

 HCAL

 Rmin = 206 cm, Rmax = 333 cm

 48 layers of Fe/Scint (2.0 cm + 0.5 cm)

 λ = 6.0 , X0 = 55.3

 Readout: 3.0 cm x 3.0 cm analog

 16 fold (outside), 8 fold (inside)

 Coil

 Rmin = 344 cm, Rmax = 419 cm

 B = 3.5 T
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Why Tungsten?

 Need shorter longitudinal shower size

 High energetic jets require more HCal material in terms of interaction lengths 
 – to achieve better containment

 Strong constraints by coil – cost and feasibility

 Need smaller lateral shower size

 High energetic jets are more boosted
 PFA performance is decreasing because of overlapping showers

 Tungsten might solve both problems

 We consider tungsten only for the HCal barrel since space constraints for 
the endcaps are not severe
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HCal-Stack Simulations

 Simple HCal geometry to investigate materials and sampling ratios

 Materials: tungsten, steel, steel-tungsten-sandwich (various thicknesses)

 Constant gap size: 5.0 mm Scint + 2.5 mm G10

 Dimensions: 5x5m and more than 25 λ in depths to guarantee shower 
containment

 Simulated 100k π+ between 1 GeV and 300 GeV for each geometry

 This should cover the energy range of jet main constituents of events with 
#jets ≥ 4 @ 3 TeV

 Defined active and dead layers during reconstruction – corresponding to 
different HCal, coil and tailcatcher sizes

 Reconstruction with a neural network (TMVA)

 Using simple shower variables: width, length, center, energy density, etc.
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HCal-Stack Simulations

 “extremely deep”-HCal performance

 Linearity is better than 2% (not shown)

 “extremely deep”-case:

 Finer passive layers are better
 Steel performs better than tungsten

Tungsten Steel
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HCal-Stack Simulations

 Performance vs HCal depth (tungsten)

The 4 points of each graph correspond to 6, 7, 8 and 9 λ total calorimeter material

 For an HCal depth of around ~ 140 cm an absorber thickness of ~ 1 cm 
tungsten seems optimal

 This corresponds to ~ 8 λ; taking into account 1 λ of ECal, a 7 λ HCal 
appears to  be sufficient for CLIC energies

 Stay away from the steep areas where leakage becomes the dominating 
factor

EMC ~ 250 GeV EMC ~ 60 GeV
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HCal-Stack Simulations

 Performance vs HCal depth (tungsten vs steel)

 Steel can perform better than tungsten, but only at a significantly bigger 
HCal size

Steel Steel, Tungsten, Steel & Tungsten
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HCal-Stack Simulations

 Impact of a Tailcatcher

 Resolution is improved by adding a tailcatcher of ~1 λ

 The effect of a bigger tailcatcher is negligible

 In this case: 0 λ implies no active material after the coil

Tungsten Steel
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Simulations with CALICE AHCal Module

 In a possible tungsten HCal prototype the 
existing active modules would be re-used

 Current electronics require the full 30mm pitch

 Additional air gaps in the HCal

AHCAL module
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Energy Resolution

 40 GeV better resolution with W

 300 GeV comparable results for both



Page 12September 30, 2009, Christian Grefe

Lateral Shower Containment

 40 GeV R
95%

  22cm for W and Fe

 300 GeV 95% containment at 
smaller radius for Fe
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Mean Shower Radius

 40 GeV smaller radius for W

 300 GeV smaller radius for Fe
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Particle Flow Performance

 Modified ILD detector

 77 layers of 10mm W + 5mm Scint  8.4 
 70 layers of 20mm Fe + 5mm Scint  8.9 

 Use Pandora PFA (without special tuning)

 Example for 8.0  HCal,                                                                            
Fe absorber, B = 5 T :                                                                                  



64%//GeV

 Consistent with                                                                                         
M. Thomsons results
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Particle Flow Performance

 Jet energy resolution comparable for W and Fe for low energies

 W performance degrades for higher energies

 No tuning of Pandora PFA
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Plans for W HCal Prototype

 Verify simulation results with a tungsten HCal prototype

 Re-use existing active modules (scintillator, micromegas, …)

 Re-use existing mechanical support structure

 Very productive workshop on September 24 at LAPP

 http://indico.cern.ch/conferenceDisplay.py?confId=68025

 Possible dimensions:

 40 layers
 Between 60x60 cm² and 80x80 cm² W plates in Fe or Al frame

 Possible timeline

 2010 – start of W plate production
 2011 – first beam tests
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Conclusion & Outlook

 W HCal is a viable option at CLIC energies because of the strong 
constraints imposed by the coil radius

 Further simulation studies are needed, especially for PFA performance

 A prototype is needed to verify simulations

 Construction of a W HCal prototype is planned within CALICE

Thank You
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Longitudinal Shower Size

95%

12 mm tungsten + scint
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Longitudinal Containment Efficiency

12 mm tungsten + scint
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Lateral Shower Size

95%

12 mm tungsten + scint
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Lateral Containment Efficiency

12 mm tungsten + scint
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Possible Errors in Simulation

 QGSP_BERT_HP seems to solve 
the problem

 Need to investigate impact on 
shower shapes and resolution 

physics list –effects (edges due 
to model change)

• GEANT4 treatment of neutrons spoils visible energy simulation

Peter Speckmayer

 QGSP_BERT_HP seems to solve 
the problem

 Need to investigate impact on 
shower shapes and resolution 
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Coil Parametrization

Alain Hervé
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Coil Parametrization

Alain Hervé
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Coil Parametrization

Alain Hervé



Page 27September 30, 2009, Christian Grefe

Tungsten Properties

 Pure tungsten

 ρ  = 19.3 g/cm3

 λ = 9.94 cm, X0 = 0.35 cm

 brittle and hard to machine

 Tungsten alloys with W > 90% + Cu / Ni / Fe

 ρ = 17 – 19 g/cm3

 λ ≈ 10 cm, X0 ≈ 0.4 cm

 Well established production procedure

 Easy to machine

 Price ~ 70 Euro/kg (without machining)
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Tungsten Alloys

 Tungsten is usually used in alloys for better mechanical properties and 
machinability

 Several ferromagnetic (W,Ni,Fe) or paramagnetic (W,Ni,Cu) alloys are 
available

www.plansee.at
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Tungsten Alloys

www.plansee.at
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