Comparison of W and Fe HCal at Multi-TeV-Energies

ALCPG, Albuquerque October 2, 2009

Angela Lucaci-Timoce (DESY) Peter Speckmayer (CERN) <u>Christian Grefe</u> (CERN)

- Motivation
- HCal stack simulation studies
- Simulations with CALICE AHCal module
- Particle Flow Performance
- Future Plans

- SiD (Lol version)
 - HCAL
 - R_{min} = 141 cm, R_{max} = 253 cm
 - 40 layers of Steel/Gas (2.0 cm + 0.8 cm)
 - $\lambda = 5.1$, $X_0 = 46.5$
 - Readout: 1.0 cm x 1.0 cm digital
 - 12 fold
 - Coil
 - R_{min} = 255 cm, R_{max} = 338 cm
 - B = 5.0 T

- ILD (LoI version)
 - HCAL
 - R_{min} = 206 cm, R_{max} = 333 cm
 - 48 layers of Fe/Scint (2.0 cm + 0.5 cm)
 - $\lambda = 6.0$, $X_0 = 55.3$
 - Readout: 3.0 cm x 3.0 cm analog
 - 16 fold (outside), 8 fold (inside)
 - Coil
 - R_{min} = 344 cm, R_{max} = 419 cm
 - B = 3.5 T

- Need shorter longitudinal shower size
 - High energetic jets require more HCal material in terms of interaction lengths

 to achieve better containment
 - Strong constraints by coil cost and feasibility
- Need smaller lateral shower size
 - High energetic jets are more boosted
 - PFA performance is decreasing because of overlapping showers
- Tungsten might solve both problems
- We consider tungsten only for the HCal barrel since space constraints for the endcaps are not severe

- Simple HCal geometry to investigate materials and sampling ratios
- Materials: tungsten, steel, steel-tungsten-sandwich (various thicknesses)
- Constant gap size: 5.0 mm Scint + 2.5 mm G10
- Dimensions: 5x5m and more than 25 λ in depths to guarantee shower containment
- Simulated 100k π^+ between 1 GeV and 300 GeV for each geometry
 - This should cover the energy range of jet main constituents of events with #jets ≥ 4 @ 3 TeV
- Defined active and dead layers during reconstruction corresponding to different HCal, coil and tailcatcher sizes
- Reconstruction with a neural network (TMVA)
- Using simple shower variables: width, length, center, energy density, etc.

• "extremely deep"-HCal performance

- Linearity is better than 2% (not shown)
- "extremely deep"-case:
 - Finer passive layers are better
 - Steel performs better than tungsten

The 4 points of each graph correspond to 6, 7, 8 and 9 λ total calorimeter material

- For an HCal depth of around ~ 140 cm an absorber thickness of ~ 1 cm tungsten seems optimal
- This corresponds to ~ 8 λ ; taking into account 1 λ of ECal, a 7 λ HCal appears to be sufficient for CLIC energies
- Stay away from the steep areas where leakage becomes the dominating factor

• Performance vs HCal depth (tungsten vs steel)

 Steel can perform better than tungsten, but only at a significantly bigger HCal size

• Impact of a Tailcatcher

- Resolution is improved by adding a tailcatcher of $\sim 1 \lambda$
- The effect of a bigger tailcatcher is negligible
- In this case: 0 λ implies no active material after the coil

Additional air gaps in the HCal

CLIC

- In a possible tungsten HCal prototype the existing active modules would be re-used
 - Current electronics require the full 30mm pitch

Page 10

cassette

Energy Resolution

- 40 GeV π^- : better resolution with W
- 300 GeV π^- : comparable results for both

Lateral Shower Containment

- 40 GeV π^{-} : $R_{_{95\%}} \approx$ 22cm for W and Fe
- 300 GeV π^- : 95% containment at smaller radius for Fe

- 40 GeV π^- : smaller radius for W
- 300 GeV π^- : smaller radius for Fe

- Modified ILD detector
 - 77 layers of 10mm W + 5mm Scint \approx 8.4 λ
 - 70 layers of 20mm Fe + 5mm Scint \approx 8.9 λ
- Use Pandora PFA (without special tuning)
- Example for 8.0 λ HCal, Fe absorber, B = 5 T : $\sigma_E/E \approx 64\%/\sqrt{E/GeV}$
- Consistent with M. Thomsons results

- Jet energy resolution comparable for W and Fe for low energies
- W performance degrades for higher energies
- No tuning of Pandora PFA

- Verify simulation results with a tungsten HCal prototype
- Re-use existing active modules (scintillator, micromegas, ...)
- Re-use existing mechanical support structure
- Very productive workshop on September 24 at LAPP
 - http://indico.cern.ch/conferenceDisplay.py?confld=68025
- Possible dimensions:
 - 40 layers
 - Between 60x60 cm² and 80x80 cm² W plates in Fe or Al frame
- Possible timeline
 - 2010 start of W plate production
 - 2011 first beam tests

- W HCal is a viable option at CLIC energies because of the strong constraints imposed by the coil radius
- Further simulation studies are needed, especially for PFA performance
- A prototype is needed to verify simulations
- Construction of a W HCal prototype is planned within CALICE

Thank You

Backup Slides

September 30, 2009, Christian Grefe

September 30, 2009, Christian Grefe

22

12

10

GEANT4 treatment of neutrons spoils visible energy simulation

10k π^+ , tungsten, QGSP BERT

- QGSP_BERT_HP seems to solve the problem
- Need to investigate impact on shower shapes and resolution

35

45

E_{π⁺MC} [GeV]

50

Peter Speckmayer

Coil Parametrization

Alain Hervé

Coil Parametrization

September 30, 2009, Christian Grefe

Coil Parametrization

September 30, 2009, Christian Grefe

- Pure tungsten
 - $\rho = 19.3 \text{ g/cm}^{3}$
 - $\lambda = 9.94 \text{ cm}, X_0 = 0.35 \text{ cm}$
 - brittle and hard to machine

- Tungsten alloys with W > 90% + Cu / Ni / Fe
 - $\rho = 17 19 \text{ g/cm}^3$
 - $\lambda \approx 10 \text{ cm}, X_0 \approx 0.4 \text{ cm}$
 - Well established production procedure
 - Easy to machine
 - Price ~ 70 Euro/kg (without machining)

- Tungsten is usually used in alloys for better mechanical properties and machinability
- Several ferromagnetic (W,Ni,Fe) or paramagnetic (W,Ni,Cu) alloys are available

Werkstoff	Abkürzung	Chemische Zusa	mmensetzung [%]	Nominelle Dichte	AMS-T-21014						
Material	Abbreviation	Chemical co	mposition [%]	Nominal density	Class						
		W	Rest								
Schwach ferromagnetisch / Weakly ferromagnetic											
DENSIMET® 170	D170	90,5	Ni, Fe	17,0	1						
DENSIMET® 176 / W	D176 / DW	92,5	Ni,Fe	17,6	2						
DENSIMET® 180	D180	95	Ni, Fe	18,0	3						
DENSIMET® 185	D185	97	Ni, Fe	18,5	4						
DENSIMET® 188	D188	98,5	Ni, Fe	18,8	-						
DENSIMET® D2M	D2M	90	Ni, Mo, Fe	17,2	-						
Paramagnetisch / Paramagnetic											
INERMET® 170	IT170	90,2	Ni, Cu	17,0	1						
INERMET® 176	IT176	92,5	Ni, Cu	17,6	2						
INERMET® 180	IT180	95	Ni, Cu	18,0	3						

www.plansee.at

	D170	IT170	D176/W	IT176	D180	IT180	D185
Elastizitätsmodul E [GPa] Youngʻs modulus E [GPa]	340	330	360	350	380	360	385
Schubmodul G [GPa] Modulus of rigidity G [GPa]	140	125	145	135	150	140	160

September 30, 2009, Christian Grefe