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Motivation

» Calorimeters measure energy deposited in the volume of the
detector

Jets (collections of particles) are of interest of physics (but they are
ill defined because of the color content)

» Di-jets produced by decays of color singlets (like W/Z) are well
defined and they are objects of primary interest

» Crystal calorimeters with dual readout offer a perspective of very
high energy resolution, but:

- How do you reconstruct jets/di-jets?

- Strong magnetic field bends particles and they land in ‘wrong’
places in the calorimeter. How does it spoil the di-jet mass
resolution
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Crystal Calorimetry version of SiD
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‘Fine’ detector. Simulated and Analyzed

Machinery established to study different
segmentations to .study the effects and to
optimize the detector design. Very good
project for students..




Simulation and Analysis

» Detector simulation within the SLIC environment (optical
calorimeter version by Hans Wenzel)

» Large even samples produced on the OSG grid

» Single particles, electrons and pions at various energies
simulated to provide the calibration samples

» Single W and single Z (with different energies simulated
to stude the di-jet mass resolution

» Analysis carried out within Jas3 framework




Analysis: Calibration

Establish calibration factors for scintillation
and Cherenkov signal using 10 GeV electrons
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Calibrated Response : 10 GeV
electrons
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Note the scale: energy resolution is, obviously, superg for electrons




Calibrated Response: 10 GeV Pions




Dual Readout Correction

» Use simple
scorrected CorrECtion (Anna
o] Driutti):
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Di-jet Mass Reconstruction

» Single W events, W momentum 0 - 100 GeV

» Treat all cells as massless particles:
(E,pX,pY,pz), with the direction of the

momentum vector determined by the cell

position (center)
» No B fleld 120+
» AM/M ~ 0.049 Ry
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Mass Reconstruction in Maghnetic
Field
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Magnetic Field Effect
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Mass resolution as a Contribution of the magnetic
function of B field field to the mass resolution

Note: Bending of charged particles in 5T field induces the
contribution to resolution larger than the calorimeter itself.



Correcting for the B Field Effect

» Magnetic field bends charged particles: the energy
depositions are displaced with respect the their ‘true’
directions

» The change of the invariant mass of a system is
calculable for each individual event

» (AM)gz = M,(B=0) - M, (B), where

M, = (ZEZ')Z _(Z;z)z

» And the direction of the momentum vector is given by
the initial direction (B=0) or the impact point at the
calorimeter (B)




Mass Resolution: B=0 (Null
correction)
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Mass Resolution: B = 6T

uncorrected corrected
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Dijet Mass: W + Z sample, B= 5T
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WW vs final states, 5T Field
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On the Robustnhess of the
Correction

» Correction for the magnetic field effect is derived from
the charged particles (tracking) information

» No correlation of any kind between the tracks and the
energy depositions in the calorimeter is used

» Correction is not sensitive to the performance of a
tracker:

- If tracking is inefficient, and some tracks are lost, the correction
(addititive) is somewhat nderestimated. This is most likely to
happen for stiff tracks in a jet core. They contribute nothing to a
correction

- |f stiff ghost tracks are ‘invented’ by the pattern recognition
failure, they do not produce any contribution to the correction




Conclusion

v

Segmented crystal calorimeter offers a powerful tool for
precise determination of di-jet masses

Strong magnetic field induces a sizeable contribution to
di-jet mass resolution

But it is easily correctable using tracking information
Correction is simple and robust
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Note: this was a summer student project. A lot of room for
further improvements in in the analysis




