How well can we measure the Higgs self-coupling at the ILC in the jj4b final state?

UB, PRD 80, 013012 (2009)

- 1. Introduction
- 2. ZHH production
- 3. Sensitivity limits
- 4. Conclusions

Ulrich Baur State University of New York at Buffalo

1 – Introduction

- If it exists, the Standard Model (SM) Higgs boson will be discovered at the LHC
- The LHC promises complete coverage of Higgs decay scenarios
- Quantitatively at the LHC: measure
 - $\Im M_H$ to 0.1%

 - $rightarrow \sigma \times \operatorname{Br}$ to 10%

• what remains to be done: determine Higgs potential

$$V(\eta_H) = \frac{1}{2} m_H^2 \eta_H^2 + \lambda v \eta_H^3 + \frac{1}{4} \tilde{\lambda} \eta_H^4,$$

 η_H : physical Higgs field, $v = (\sqrt{2}G_F)^{-1/2}$, SM: $\tilde{\lambda} = \lambda = \lambda_{SM} = m_H^2/(2v^2)$ $\Leftrightarrow \lambda$ and $\tilde{\lambda}$ are *per se* free parameters

- to measure λ ($\tilde{\lambda}$), experiments must observe *HH* (*HHH*) production
 - *HHH* cross sections too small to probe $\tilde{\lambda}$ at any machine considered so far

 \Leftrightarrow concentrate on λ in the following

- radiative corrections to *HHH* coupling:
 - $rac{SM: -4\% -11\%}{for 120 GeV} < M_H < 200 GeV (Yuan$ *et al.*)
 - \sim can be up to 100% in general 2HDM
 - MSSM: up to 8% for light stop squarks (Hollik *et al.*)

- The measurement of the Higgs self-coupling, λ , is one of the benchmarks which is used to gauge the performance of the ILC
- Past investigations have focused on a very light Higgs boson ($m_H = 120 \text{ GeV}$) with $\sqrt{s} = 500 \text{ GeV}$
- and the background was estimated using shower Monte Carlos
- Here, I present calculations using MadEvent

$$rightarrow$$
 for $m_H = 120 \text{ GeV}$ and $m_H = 140 \text{ GeV}$

$$rightarrow \sqrt{s} = 500 \text{ GeV}$$
 and 1 TeV

$$\Leftrightarrow$$
 for $e^+e^- \rightarrow ZHH \rightarrow jj4b$

- with the backgrounds, including the non-resonant diagrams, calculated using exact matrix elements

2 – *ZHH* **Production**

 I focus on ZHH → jj4b and require that the jj system is compatible with a Z boson, and the 4b's form two pairs which are compatible in invariant mass with a Higgs boson:

 $|M_Z - m(jj)| < 8 \,\mathrm{GeV}$

100 (120) GeV < $m(b\bar{b}) < 126$ (150) GeV

for $m_H = 120 (140)$ GeV.

- require 4 tagged *b*-quarks
- include minimal detector effects by Gaussian smearing (ILC detector expectations):

$$\frac{\Delta E}{E} (\text{had}) = \frac{0.405}{\sqrt{E}}, \qquad \frac{\Delta E}{E} (\text{lep}) = \frac{0.102}{\sqrt{E}}$$

• cuts:

$$E_{j(b)} > 15 \text{ GeV}, \qquad 5^{\circ} < \theta(j(b), \text{beam}) < 175^{\circ}$$

 $\theta(j(b), j'(b')) > 10^{\circ} \qquad \theta(j, b) > 10^{\circ}$

- assume a *b*-tagging efficiency of $\epsilon_b = 0.9$, and charm and light quark/gluon jet misidentification probabilities of $P_{c \rightarrow b} = 10\%, P_{j \rightarrow b} = 0.5\%$
- also investigate $\epsilon_b = 0.8$ and $P_{c \to b} = 2\%$, $P_{j \to b} = 0.1\%$
- take energy loss of *b*-quarks into account via a parametrized function
- m_{HH} distribution is sensitive to λ

- main backgrounds:
 - In non-resonant diagrams (≈ 8500 $\mathcal{O}(\alpha^6)$, $\mathcal{O}(\alpha_s^4 \alpha^2)$ and $\mathcal{O}(\alpha_s^2 \alpha^4)$ diagrams)
 - $rightarrow jjb\overline{b}c\overline{c} (b\overline{b}4j)$ production with two mis-identified charm (light quark/gluon) jets (7300 [15600] diagrams)
 - assume *b*-jet charge can be measured with 100% efficiency (expectation for ILC: ≈ 90%)
- results: solid black: SM signal, magenta: SM resonant and non-resonant diagrams dash (dots): $\Delta \lambda_{HHH} = (\lambda/\lambda_{SM} - 1) = +1$ (-1) dashed blue: $jjb\bar{b}c\bar{c}$ background

- The $jjb\bar{b}c\bar{c}$ and non-resonant backgrounds for $m_H = 140$ GeV are much larger than for $m_H = 120$ GeV
- The cross section for $m_H = 140$ GeV is tiny $(Br(H \rightarrow b\bar{b}) \approx 30\%)$
- black dashed histogram: combinatorial background from pairing the wrong b and \overline{b}

- The background for $m_H = 140$ GeV is significantly smaller for $\sqrt{s} = 1$ TeV
- The $b\bar{b}4j$ background is negligible at both $\sqrt{s} = 500$ GeV and 1 TeV

- The $e^+e^- \rightarrow ZHH \rightarrow jj4b$ rate is very small
- The signal rate can be increased by requiring ≥ 3 tagged b-quarks instead of 4 b-tags
 gain: factor ≈ 1.4

 $\sqrt{s} = 500 \text{ GeV}$

• lines:

solid (dashed) blue: $b\bar{b}cjjj$ ($b\bar{b}c\bar{c}jj$) red: $b\bar{b}4j$ all others have the same meaning as before

- Unfortunately, at $\sqrt{s} = 500$ GeV, the gain is more than compensated by the increase in the $b\bar{b}4j$ and $jjb\bar{b}c\bar{c}$ background.
- In addition, $b\bar{b}cjjj$ production contributes to the background
- Note: the background cross section is $\propto \alpha_s^4$ and thus carries a substantial renormalization scale uncertainty
 - → either need NLO QCD corrections calculated for backgrounds (good luck with that!) or have to measure backgrounds

• background much more favorable at $\sqrt{s} = 1$ TeV; however, it is still non-negligible

3 – Sensitivity limits

- Perform a log-likelihood test
- Assume a 10% systematical uncertainty on cross section (probably optimistic)
- assume $\int \mathcal{L} dt = 1$ ab⁻¹ (corresponds to 5 years of running at ILC design luminosity)
- no (marignal) gain from including final states with only 3 tagged bquarks for $\sqrt{s} = 500$ GeV (1 TeV)
 - \rightarrow considering a working point with a somewhat reduced *b*-tagging efficiency, but a much reduced light/charm misidentification probability may help

• 68% CL limits:

• for $m_H = 140$ GeV, $\sqrt{s} = 1$ TeV and $\nu \bar{\nu} H H$ production, the $HH \rightarrow b\bar{b}WW^*$ final states are included in the analysis

4 – Conclusions

- Non-resonant diagrams can significantly affect the total and differential cross sections for $e^+e^- \rightarrow jj4b$
- At a 500 GeV e⁺e⁻ machine, one can measure the Higgs boson selfcoupling only if the Higgs mass is close to the current lower experimental limit
- At a 1 TeV machine, with 1 ab^{-1} , $\nu \bar{\nu} HH$ production gives more precise limits than $e^+e^- \rightarrow ZHH$.