2009 Linear Collider Workshop of the Americas

Detectors: Tracking and Vertex Detection

Bruce Schumm, UC Santa Cruz Bill Cooper, Fermilab

Presentations

- 6 presentations in vertex detection sessions
- 12 in tracking sessions
- All presentations were excellent.
- Regrettably, there is not time to cover each of them.
- We will concentrate on developments and issues.
- One related topic, 3D technology developments, was covered in Marcel Stanitzki's plenary talk on Detector R&D, so will not be included here.
- My thanks to Bruce Schumm, who provided the transparencies summarizing the tracking sessions.

Vertex Detection: Sensors

• Steady progress in sensor/readout development (5 talks)

21.5mm x 13.7 mm

660K pixels

Fast full scale sensors: ~10kFrame/s

column parallel architecture + integrated

zero-suppression

Rolling shutter readout

Good analogue, digital, and zero

suppression performance

Total noise 0.7 mV (~12-13 e⁻ ENC) like MIMOSA-22.

120 μ m thickness to be thinned to 50 μ m

Schumm / Cooper

ISIS 2 (Andrei Nomerotski – Oxford)

- Received ISIS2 from Jazz Semiconductor in Oct 2008
 - Process: 0.18 µm with dual gate oxide
 - Developed special process: buried channel and deep p+ implant
- First time ever CCD buried channel in a CMOS process

Vertex Detection: Sensors

- DEPFET Collaboration <u>www.depfet.org</u> (Carlos Mariñas IFIC)
- 12 members at present: U. Barcelona; Ramon Llull U.; Bonn U.; Heidelberg U.; Goettingen U.; Karlsruhe U.; IFJ PAN (Krakow); MPI Munich; Charles U. (Prague); IGFAE, Santiago de Compostela U.; IFIC, CSIC-UVEG, Valencia; U. Giessen
- Full-sized sensors for ILC, Belle-II (KEK)

Vertex Detection: Sensors

- Chronopixels (N. Sinev, U. Oregon)
- May 2008
 - Fabricated 80 5x5 mm chips, containing 80x80 50 µm Chronopixels array (+ 2 single pixels) each
 - TSMC 0.18 μ m \Rightarrow ~50 μ m pixel
 - Epi-layer only 7 µm
 - Low resistivity (~10 ohm*cm) silicon
 - Talking to JAZZ (15 µm epi-layer)
- August 2009
 - Test boards debugged and calibrated
- September 2009
 - Chronopixel chip tests begun
 - Some problems, but the general concept works
- Next prototype, implementing deep P-well, may be ready for submission at the end of 2009 or early 2010.

FPGA board

Chronopixel test board

Vertex Detection: Design and Readout

- (K. Itagaki, Tohoku U.)
- FPCCD vertex detector
 - Fine Pixel CCD
 - Pixel size : 5µm × 5µm
 - Epitaxial layer thickness : 15µm
 - 20,000 ×128 pix/ch
 - # of channels ~ 6,000ch
 - Double layers : CCDs are attached on two sides of the ladders.
- Readout ASIC goals:
 - Power consumption < 6 mW/ch
 - Readout rate > 10 Mpix/sec
 - Noise level < 30 electrons
- First test sample
 - 0.35mm TSMC process
 - Chip size : 2.85 mm × 2.85 mm
 - # of channels : 8
 - Some problems with noise and lost ADC bits

120mm

Vertex Detection: Mechanics

• The PLUME project

Bristol, Strasbourg, DESY, Oxford (others welcome)

Mimosa 26 sensors on a foam core

0.2-0.3 % X₀

First prototype (reduced scale) to be tested in SPS beam next November. Full scale prototype expected in 2010.

Vertex Detection: Mechanics

- Vertex detector structures using SiC foam (Ryan Page, U. Bristol)
- Collaboration of U. Bristol, U. Glascow, U. Liverpool, and STFC RAL
- Investigated:
 - Machining Methods
 - Mechanical Properties
 - Charactering of features
 - Module construction
 - Thermo-mechanical analysis
 - Vertex detector geometry

Machined samples of _____ end-plate type geometry

- Ladder samples fabricated with foam having densities of 6% and 3.2% that of solid material --- 3.2% foam is a new development!
 - With a 30 μ m sensor, 3.2% foam \rightarrow 0.079% X0 (meets goals)
 - Good thermal stability
 - Half module straightness < 10 μ m for Δ T = 40°C

Schumm / Cooper

Highlights from the Tracking Sessions

12 talks in three sessions

Rough accounting:

ILD	SiD	Generic
6	1.5	4.5
	-OR-	
Gaseous		Solid State
4.5		7.5

Topics sampled for summary:

- Results from TPC Large Prototype
- TPC Pixel Readout
- TPC Backgrounds
- SiD Tracker Performance (simulation)
- Charge Division for Silicon Sensors
- "Alignment Aware" Si Sensors

And much more (apologies to colleagues)

Results from the Large TPC Prototype at DESY Klaus Dehmelt (DESY), Hirotoshi Kuroiwa (KEK), Takeshi Matsuda (DESY/FLC)

Large TPC prototype in operation at DESY

- 0.77 meter diameter
- 30 cm longitudinal drift
- Magnetic field up to 1.25 T

Readout:

- Double/triple GEM
- MicroMeGaS
- (Resistive) Pads
- Pixels (TimePix)

100 μm resolution goal should be met at 4T

Schumm / Cooper

- Resolution at z=0: σ_0 = 54.8±1.6 μm with 2.7–3.2 mm pads (w_{pad}/55)

+ Effective number of electrons: N_{eff} = 31.8±1.4 consistent with expectations

TimePix Readout

Cluster counting for an ILC TPC?

"MediPix" Imaging chip + 3rd Coordinate (drift time)

→ "TimePix" sensor (Jan Timmermans, NIKHEF)

 $55\mu m \ x \ 55\mu m \ x \ 100 MHz$ pixelation

Avoid Landau statistics if diffusion doesn't mix clusters together

> **3-GEM amplification plus 500K TimePix channels**

Schumm / Cooper

From MediPix to INGRID (Jan Timmermans, NIKHEF)

TimePix chip plus deposited grid plus stand-offs: INGRID readout system (gasgain plus 50 µm pixelated readout)

Working towards ~10cm x 10cm array

Full instrumentation of ILD TPC requires ~10¹⁰ channels (same order as VXD)

Schumm / Cooper

IDAG: Can a TPC handle LC backgrounds? Explored by Steve Aplin (DESY)

Approach: develop algorithm to eliminate "microcurlers" by looking for contiguous strings of voxels

Schumm / Cooper

Simulation of 100 ttbar events with backrounds

Tracking efficiency appears robust even at 3x nominal background.

Nominal Background 150 BX

TPC Tracking Efficiency (Good Tracks) vs Ces8 (p>1GeV and NHits>30)

0.995 0.99 0.985 0.98 0.2 0.4 0.6 0.8 0 cos θ

~3 x Nominal Background 500 BX

TPC Tracking Efficiency (Good Tracks) vs Cost (gs-tGeV and NHitso-80)

cos θ

SiD Tracker Performance (full-ish simulation)

Top pair events at $E_{cm} = 500 \text{ GeV}$

Full GEANT simulation plus strategy-based pattern recognition (Richard Partridge)

→ Near-perfect efficiency over full range in p_T , $|\cos\theta|$

SiD Tracker Performance (full-ish simulation)

Charge Division for Silicon Sensors

- SCIPP built discrete resistive network (SiD "charge division" sensor not available)
- Benchmark PSpice simulation

Observations:

- Longitudinal resolution independent of R; grows as \sqrt{C}
- Noise dominated by network, not amplifier
- Achieve resolution of ~6% of sensor length
- $\sigma_{\rm Z}$ ~ 6mm for 10cm sensor

Alignment-Enabled Sensors (Alberto Ruiz-Jimeno; Cantabria)

In Conclusion

- Vertex detector collaborations are being formed to develop sensors and detector mechanics, particularly overseas.
- The development of sensor technologies continues at a good rate.
 - For many technologies, full-sized sensors are still in the future.
- Excellent progress has been made on vertex detector mechanics.
- A few issues which deserve attention (some covered in talks, some less completely covered):
 - All detectors:
 - Power cycling and power distribution
 - Alignment
 - Silicon-based detectors
 - Chip on sensor connections
 - TPC's:
 - Gating to control ion feedback into the fiducial volume
 - Tracking in a non-uniform magnetic field
 - End plate structures satisfying a budget of 15% X0
- Thank you!