

· Si D · Overview

- ◆ SiD has an all-Silicon Tracker
 - 5 barrel + 7 disk pixel inner vertex detector
 - 5 barrel (axial strip) + 4 disk (stereo strip) outer detector
 - ~10 precision hits per track

• SiD

Measuring Tracker Performance

- This talk focuses on the tracker performance reported in the SiD Letter of Intent
- Performance was determined using detailed simulation of the SiD tracker using GEANT to simulate detector response
- ◆ For LOI, SiD modeled tracker as cylinders and disks
 - "Virtual Segmentation" used to divide cylinder/disk into individual sensors
 - "Planar Detector" with individual silicon sensors and detailed simulation of charge deposition / hit clustering has recently been made available
- ◆ Track finding code (seedtracker) used to reconstruct tracks
 - Results presented here only use information from the tracker see Dima Onoprienko's talk for Calorimeter Assisted Tracking
- ◆ All software (except for GEANT) is based on the Java-based lcsim software distribution

SeedTracker Algorithm

Track finding begins by forming all possible 3 hit track seeds in the three "Seed Layers"

- Brute force approach to finding all possible track seeds
- Require the presence of a hit in a "Confirmation Layer"
 - Significantly reduces the number of candidate tracks to be investigated
 - Add hits to the track candidate using hits on the "Extension Layers"
 - Discard track candidates with fewer than 7 hits (6 hits for barrel only tracks)
 - If two track candidates share more than one hit, best candidate is selected
 - Upon each attempt to add a hit to a track candidate, a helix fit is performed and a global χ^2 is used to determine if the new track candidate is viable

• SiD

Track Finding Strategy

- ◆ The user interacts with the track reconstruction program by specifying one or more "strategies"
- ◆ For the LOI, we used strategies that required:
 - At least 7 hits on the track
 - Only 1 hit per layer
 - Special barrel only strategy with 6 hits used to pick up low-p_T particles in the central region
 - $p_T > 0.2 \text{ GeV}$
 - $r \phi$ and s z impact parameter cuts $|d_0| < 1$ cm and $|z_0| < 1$ cm
 - χ^2 < 50 (χ^2 < 25 for 6-hit barrel only strategy)
- "Strategy Builder" used to find optimized sets of seed and confirm layers used for efficient track finding
- Unless otherwise noted, tracking performance results that follow are for tt events at $E_{cm} = 500 \text{ GeV}$

Tracking Efficiency

◆ Track reconstruction algorithm has >99% efficiency for "findable" tracks that pass momentum and impact parameter cuts and have at least 6 hits

Selection	Selection Efficiency	Cumulative Efficiency
All Tracks	-	100%
$p_T \ge 0.2 \text{ GeV}$	$(93.54 \pm 0.11)\%$	$(93.54 \pm 0.11)\%$
$N_{hit} \ge 6$	$(90.91 \pm 0.13)\%$	$(85.04 \pm 0.16)\%$
Seed Hits Present	$(99.78 \pm 0.02)\%$	$(84.85 \pm 0.17)\%$
Confirm Hit Present	$(99.95 \pm 0.01)\%$	$(84.84 \pm 0.17)\%$
$ d_0 \leq 1 \text{ cm}$	$(99.80 \pm 0.02)\%$	$(84.65 \pm 0.17)\%$
$ z_0 \le 1 \text{ cm}$	$(99.69 \pm 0.03)\%$	$(84.39 \pm 0.17)\%$
Track Reconstruction	$(99.32 \pm 0.04)\%$	$(83.81 \pm 0.17)\%$

Tracking Efficiency vs p_T , $cos(\theta)$

- Generally find high tracking efficiency for tracks with:
 - $p_T > 0.2 \text{ GeV}$
 - $|\cos(\theta)| < 0.99$

Efficiency at Barrel / Endcap Transition

- Observe a drop in efficiency for low p_T tracks in the barrel / endcap transition region
 - Believed to be due to tracks that curl by >180° between barrel and disk layers
 - Expect that further optimization of strategies / tracking algorithm will eliminate this dip

Comparison with MC Truth

- ◆ We identify which MC particles are associated with each hit
- Assign track to the MC particle that contributes the most hits
- ◆ Find how many hits on the track are from other MC particles
- ◆ >99% of tracks have ≤1 mis-assigned hits, ~0.07% fake tracks

Momentum Resolution

10

DCA Resolution

11

Momentum Resolution

Good momentum resolution everywhere!

Impact Parameter Resolution

4 um impact parameter resolution at high momentum

Tracking Efficiency in Core of Jets

- Look at tracking efficiency vs angle between track and thrust axis for 1 TeV qq events
- See high tracking efficiency even in core of high energy jets

Tracking Efficiency with Backgrounds

◆ High tracking efficiency for *bb* events at 500 GeV with background from 10 beam crossings overlaid (10x baseline)

· Si D · Summary

- SiD has characterized tracking performance using detailed GEANT simulations with full track reconstruction
- ◆ >99% tracking efficiency for findable tracks
 - Findable tracks in this study have $p_T > 0.2$ GeV, <1 cm impact parameter
- High tracking efficiency over full solid angle
 - Tracking coverage extends to $|\cos(\theta)| \sim 0.99$
 - Uniform efficiency except for dip in efficiency for low p_T tracks at barrel-disk transition further work needed here
- \diamond <1% of tracks have >1 mis-assigned hit, fake rate $\sim 0.07\%$
- Excellent momentum and impact parameter resolution
- ◆ Excellent tracking performance maintained in core of high energy jets and in events with 10x expected background