

IR/Backgrounds & Beam Instrumentation Summary

Six Sessions, 20 talks

Instrumentation:

-WAB Monitor (2)

-Polarimeter, Energy Spectrometer (4)

IR:

- -SB2009 Parameters (1)
- -QD0 & DID Design (2)
- -Push-Pull, Vibration Modeling (3)
- -FCAL & Pair Monitor (4)
- –IP Feedback (2)
- -Beam Gas & IR Vacuum (2)

Tom Markiewicz/SLAC ALCPG'09, UNM, Albuquerque 3 October 2009

Take Away Points

- Post LOI Collaboration on Push-Pull Solutions has begun
 - "Easy" problems have solutions (Pacman Interface)
 - Understanding that "Hard" choices (Platform or No Platform) must be based on calculation, simulation, and measurement (not bias)
- ANSYS-based studies of vibration response of SiD and ILD have begun
 - Don't look too bad, but:
 - What is the mechanical engineering requirement
 - How to make design better
 - Measurements at KEK-Belle & CERN-CMS (to be discussed at CLIC'09)
- SB2009 Low Power Parameter set with or without "Travelling Focus" Needs Study
 - IP Backgrounds, Beampipe dimensions & apertures
 - Collimation system: Muons, SR, Jitter, etc.
 - Luminosity sensitivity to jitter, effect of IP feedback and stricter requirements of upstream system stability
 - DR Kicker jitter &/or RTML feed forward stabilization
- Steady Progress on challenging instrumentation despite limited support
 - First observation of Optical Wide Angle Bhabha Rad. & use as a beam monitor
 - Improved IP Vacuum requirement calculation
 - Other results as time allows

İİL

All detectors without platform

2008.11.17 MDI-LCWS'08

T. Markiewicz/SLAC

All detectors on platform

2008.11.17 MDI-LCWS'08

ilc

T. Markiewicz/SLAC

Half Platform w/ Pocket Storage

2008.11.17 MDI-LCWS'08

T. Markiewicz/SLAC

SID ANSYS

5th Mode, 10.42 Hz

2008.11.17 MDI-LCWS'08

ilr

T. Markiewicz/SLAC

Preliminary ANSYS analysis of Platform

2008.11.17 MDI-LCWS'08

T. Markiewicz/SLAC

Low P Parameter Set w/w.o. Traveling Focus

- Higher Disruption
 - Higher sensitivity to ∆y
 - Intratrain Feedback more challenging
 - Vertical beam offset must be kept <200pm for <5% lumi loss
 - Constraints on Bunch-Bunch uniformity coming into BDS
 - More IP pairs at larger angles
- βx(LP)~50% βx(RDR)
- $\beta y(LP-TF) \sim 50\% \beta y(RDR)$
 - Collimation depth 1.4x deeper (smaller holes)
 - Muons
 - enhanced spoilers
 - Collimator wake jitter

T. Markiewicz/SLAC

250 GeV e- \longrightarrow 2.4-cm ϕ 7-m long gas (H₂/CO/CO₂)

 Among the three beam gas scattering processes considered in the BDS, only Moller scattering off atomic electrons is significant.

T. Markiewicz/SLAC

First Observation of Optical Wide Angle Beamstrahlung

polarization directions, amplitudes sensitive to beam parameters:

Systems being designed

for KEKB, Frascati

Data:

G. Bonvincini

- · Large solid angle to collect the beamstrahlung radiation $\Omega = 2\pi (Cos\theta_{min} - Cos\theta_{max})$
- · Confocal imaging to achieve high spatial resolution

$$\Delta x = \Delta y \simeq \frac{0.61 \cdot \lambda}{Sin\theta_{\max}} \qquad \Delta z \approx \frac{0.61 \cdot \lambda}{Sin^2\theta_{\max}}$$

· Detection scheme includes optical filters, polarizers, CCD matrix to measure angular intensity distribution

Pair Monitor Studies (and ASIC Development)

University

Measurement accuracy

	Pair-monitor	BeamCal	Pair-monitor + BeamCal
$\sigma_{\rm x}$	3.2 %	4.1 %	2.8 %
σ_{y}	10.1%	15.6 %	8.6 %
$\Delta_{\mathbf{y}}$	8.6 %	9.4 %	7.4 %

Energy and Polarization: A Reminder

Redundant measurements:

- control systematics, measure effects of beam-beam interaction

Accuracy driven by Physics:

- $\Delta E_{beam} / E_{beam} \sim 100-200 \text{ ppm}$
 - precision measurements of particle masses
 - Spectrometer techniques

• $\Delta P/P \sim 0.25\%$

- Precision EW
- Evolution of SLC polarimeter
 - \Rightarrow lower systematics
- R&D: system integration tests, reduction of systematic effects

Polarimetry: Prototypes & Systmatics

D. Kaefer

Measurements/Correction of non-linearities to sub-percent level

Prototype Channel in Electron Beam test

Measured Asymmetry compared with Simulation:

Magnetic Spectrometer Tests: SLAC ESA

M. Hildreth

Straightness Monitor ATF2 Installation

• Measure/correct position of BPMs used in IP steering feedback:

October 1, 2009 Mike Hildreth – ALCPG09

