High lights from Calorimeter and Muon sessions Lei Xia ANL – HEP

CALICE SiW ECAL

Physics prototype: proof of principle

Linearity

Overview

CALICE ScW ECAL

Physics prototype: proof of principle

Deposit energy in ECAL (MIP)

(GeV/c)

CALICE AHCAL

Physics prototype: proof of principle

CALICE TCMT

DREAM module

Physics prototype: proof of principle

Energy Resolution 20GeV π -

Up coming: CALICE RPC DHCAL physics prototype

RPC construction

Robotic test of FE ASIC (DCAL III) at FNAL

RPC checkup with 1m³ electronics

Automated FE and Pad board gluing

DHCAL 1m3 prototype will reuse CALICE AHCAL structure

Construction ongoing, Beam test starts Spring 2010 Proof of principle for gaseous DHCAL

Physics prototype beam data: MC comparison

Caveat: QGSC CHIPS, QGSP FTFP BERT and FTFP BERT TRV models available only in GEANT4 9.3beta version, i.e. under development

Towards realistic detector

Physics prototype \rightarrow real detector == challenging R&D (not just some engineering issues!)

A financialy viable ecal for ILD assumes that

A cost at the level 2 € / cm² Now we are at the level of 10 to 20 €/cm² Might save a bit if a big amount is ordered About 2500 m² of sensors needed for SiW ECAL of ILD = 300 000 sensors (actual design)

Top Priority R&D for CALICE SiW ECal group in coming years

Gold stud bonding of KPiX chip

Reaout flex cable & wire bonding jig (US SiW ECal group)

Towards realistic detector

CALICE AHCAL integrated readout board

SiPM direct coupling: no WLS fibers

(CALICE AHCAL)

Mega tile

Sensor/readout development

RPC SDHCAL group: high rate RPC

MicroMegas group: high gain, how noise FE ASIC development and testing (DIRAC v2)

UTA group: GEM chamber characterization Using KPiX with cosmic ray external trigger

High lights from muon sessions

Scintillator strips with MPPC readout

Results from TB Fall 08

This is our typical plots

жини

ID

TB4 key features

Scintillator strips with MPPC readout

- 4ch of HS ADC (10 or 12 bit, 210 or 250 MSPS)
- Largish FPGA (with 4kpts memory/ch)
- USB interface, High Speed io
- On board bias generation for SiPMs (and current meas)
- To use:
 - Plug in 5V power
 - Plug in SiPM into an end of a 50 ohm cable
 - Plug the other end of the cable into the TB4 board
 - Plug in the USB connector into your computer
 - Start the software, and press the RUN button

Bakelite RPC aging studies: Babar RPCs

Noise Rate and Currents with Cosmic Rays

- Both noise and currents have increased over 5 years
- Average noise rate 400 Hz → 3 kHz (area 1.5 2 m²)
- Average current < $1 \mu A \rightarrow 12 \mu A$

40 GeV μ-

20 GeV π⁻

Summary

- Proof of principle work done for many detectors
- Gaseous DHCAL proof of principle coming up next year
- Physics prototype tests provide valuable data to improve simulation
- R&D towards realistic detector started
- Many development on sensor/readout