Implementing a dual readout calorimeter in SLIC and testing Geant4 Physics

ALCPG 2009

Hans Wenzel

Fermilab

Friday, 2nd October 2009

Outline

- Enabling dual read out in SLIC and Icsim.
- The ccal02 detector implementation.
- Geant 4: modeling of hadronic physics and optical processes.

Why SLIC/lcsim?

- Geant 4 based framework for detector simulation.
- XML based detector description:
 - Easy to implement various detector variations: materials, segmentation, optical properties, ...
- Variety of physics lists.
- Using SLIC allows us to make use of the entire SID framework: SLIC, Icsim.org (netbeans), WIRED, JAS3, LCIO Event Browser..... → this allows us to study physics performance as part of a complete detector.
- Easy to run SLIC on the grid → Grid scripts : easy to generate large data sets, takes care of names, random seeds etc., http://confluence.slac.stanford.edu/display/ilc/How+do+I+use+the+OSG+Grid
- At the moment we can produce data faster than we can analyze it →automating using lcsim.org

What needed to be done to simulate total absorption dual read out calorimeter in SLIC

- Need to add optical physics (Cerenkov,Scintillation etc.,) \rightarrow now can be used with any physics list.
- Need to be able to add optical properties to materials in detector description e. g. refraction index/absorption as function of photon energy.
- Sensitive detector needs to be able to produce multiple hit Collection (Energy deposition, Cerenkov) \rightarrow this is allowed in GEANT 4 but SLIC in its original form only allowed for one Hit collection per sensitive collector.
- Implement special optical calorimeter class:
 - Register energy deposition (Edep hits).
 - deal with optical photons. We don't track optical photons but kill them after the first step and add their energy to the Cerenkov hits.

What can't be done (yet)

Not the framework for detailed studies of e.g. light yield, spectral response, timing....

- Currently to do that we use GEANT 4 stand alone application. GEANT 4 has all the relevant processes: scintillation, cerenkov, wavelength shifting, dispersion, absorption, reflection
- Would be cool to extend SLIC to be able to do this studies:
 - Geometry description needs to be extended to describe additional optical properties e.g. the optical properties of surfaces.
 - Implementation of a photo- detector class.
 - Ability to make our own classes persistent (ROOT).
 - Large amount of optical photons \rightarrow need to deal with memory issues.

Properties of ccal02

Start with the SID02 description and replace calorimeter with crystal calorimeter consisting of cylindrical layers in the central region and disks in the end caps. All necessary files are in CVS.

				BGO		PbWO ₄	
Name	Layers	Thickness/Layer	Segmentation	X ₀	λι	X0	I
		[cm]	[cm x cm]				
ECAL Barrel	8	3	3 x 3	21.4	1.1	27	1.3
HCAL Barrel	17	6	6 x 6		4.7		5.7
Total Barrel	25				5.8		7
ECAL Endcap	8	3	3 x 3	21.4	1.1		1.3
HCAL Endcap	17	6	6 x 6		4.7		5.7
Total Endcap	25				5.8		7

Material	Density	Radiation length X0	IA length ll
	[g/cm3]	[cm]	[cm]
BGO	7.13	1.12	21.88
PbWO4	8.3	0.9	18
SCG1-C	3.36	4.25	45.6

CCAL02 Scintillation response as displayed in the Wired event display

ZZ->qqvv

Digisim

October 2nd 2009

CCAL02 Cerenkov response as displayed in the Wired event display

ZZ->qqvv

October 2nd 2009

Automate analysis

Goal: study many Detector variations, physics list etc. , obtain optimal detector configuration. Use grid to generate data sets, but also need to automate analysis like calculation of energy scale, correction functions and obtain resolution function \rightarrow three lcsim modules, driven by JobControlManager, output ASCII and .aida.

- Ecorrection: expects single electrons, obtains scale for Edep and Cerenkov response.
- DualCorrection: expects single Pions, obtains dual readout corrections combined and for various energies.
- Resolution: obtains resolution as a function of energy.

Electron response

October 2nd 2009

🗇 G4Data0.heprep

Correction function as function of energy

Energy dependence of correction functions

LCPhys: physics list, ccal02 BGO

October 2nd 2009

Finally: Resolution function

BGO Calorimeter response for different physics models

Particles produced within the calorimeter! No threshold! \rightarrow all energy deposition are added up

October 2nd 2009

BGO relative width of energy response to charged pions for different physics lists

BGO Calorimeter Cerenkov response for different physics models

October 2nd 2009

Summary

- SLIC has been extended to allow for dual read out. Dual readout is 'completely' integrated in the SID software framework.
- Various detector versions are available (ccal02). Large data sets are available at Fermilab. http://confluence.slac.stanford.edu/display/ilc/SLIC+Dual+Read+out+Tutorial
- GEANT 4: good tool to model optical processes.
- Observe big differences when using different physics lists. Started dialog with the GEANT 4 team and will continue to work with them.

Backup slides

Width of cerenkov distribution

DualCorrection:S/E vs C/S all energies combined

c_efrac_ratio

0.8

1.0

1.2

0.4

0.6

21

/E vs C/S all energies combined

c_efrac_ratio combined

October 2nd 2009

Electron Cerenkov response correction function

Correction function as function of energy

Note: For high energies (50, 100) only the low values in C/S have not been Excluded: resulting in a bad fit. Non interacting (minimum ionizing) pions not removed

Calorimeter response for different physics models

G4Data0.he

Width of calorimeter response

ceren vs Edep

October 2nd 2009

Goals

- Automate calculation of energy scale and correction functions using lcsim.org.
- Learn how to use lcsim effectively.
- Obtain correction functions/resolution curves for different
 - _ Physics models
 - _ Detector configurations (n, material....)
 - _ Incident angles
 - …
- Make functions available as lcsim module.
- Study energy dependence of correction functions. Can we achieve better resolution with making energy (angular ..) dependent corrections?
- Provide material for ALCPG
- Document everything on:
 http://confluence.slac.stanford.edu/display/ilc/SLIC+Dual+Read+out+Tutorial

Electron Cerenkov response

LCPhys_e-_all_130.aida - e-20

0.00254 0.00255 0.00256 0.00257 0.00258 0.00259 0.00260 0.00261 0.00262 0.00263 0.00264 0.00265 0.00266 0.00267 0.00268 0.00269

🗍 G4Data0.hepre

Pion response after dual corrections (all energies combined)

dual readout corrected Energy Cloud

10

15

20

1,800-

1,600-

1,400

1,200

1.000

800-

600

400-

200

0

Entries : 10000 1,400 -Mean: 15.2002 53467 1,200-Rms : 🛔 1,000-800 600 400-200-0 5 3

dual readout corrected Energy Cloud

dual readout corrected Energy Cloud

dual readout corrected Energy Cloud

October 2nd 2009

dual readout corrected Energy Cloud

5

Corrected Cerenkov response

October 2nd 2009