Implementing Dual Readout in ILCroot

Vito Di Benedetto

INFN Lecce and Università del Salento

ALCPG09, Albuquerque, New Mexico October 2, 2009

Outline

- •The 4th Concept
- •ILCroot Offline Framework
- •Calorimeter layout
- •Calibration studies and calorimeter performances
- •Comparison of DREAM data with ILCroot simulation

•Conclusion

"The 4th Concept" detector

- •VXD (SiD Vertex)
- •DCH (Clu Cou)
- •ECAL (BGO Dual Readout)
- •HCAL (Fiber Multiple Readout)
- •MUDET (Dual Solenoid, Iron Free, Drift Tubes)

ILCRoot: summary of features

- CERN architecture (based on Alice's Aliroot)
- Full support provided by Brun, Carminati, Ferrari, et al.
- Uses ROOT as infrastructure

All ROOT tools are available (I/O, graphics, PROOF, data structure, etc)

Extremely large community of users/developers

- Six MDC have proven robustness, reliability and portability
- Single framework, from generation to reconstruction through simulation. Don't forget analysis!!!

All the studies presented are performed by ILCRoot

The 4th Concept HCAL

- Cu + scintillating fibers
 + Čerenkov fibers
- ~1.4° tower aperture angle
- 150 cm depth
- ~ 7.3 λ_{int} depth
- Fully projective geometry
- Azimuth coverage down to ~2.8°
- Barrel: 16384 towers
- Endcaps: 7450 towers

Hadronic Calorimeter Towers

The 4th Concept ECAL

- BGO crystals for scintillating and Čerenkov light
- 25 cm depth
- ~22.7 $X_{_0}$ depth and ~ 1 $\lambda_{_{int}}$ depth
- 2x2 crystals for each HCAL tower
- Fully projective geometry
- Azimuth coverage down to ~2.8°
- Barrel: 65536 crystals
- Endcaps: 29800 crystals

ECAL section

Electromagnetic Calorimeter Cells

- Array of 2x2 crystal
- Crystal size ~ 2x2x25 cm³
- Each crystal is used to read scintillating and Čerenkov light
- Each crystal works as two independent cells in the same volume

Top cell size: ~ $4.3 \times 4.3 \text{ cm}^2$ Bottom cell size: ~ $3.7 \times 3.7 \text{ cm}^2$

Prospective view of BGO cells array

crystal length: 25 cm

Dual Readout BGO Calorimeter

MonteCarlo

- ROOT provides the Virtual MonteCarlo (VMC) interface
- VMC allows to use several MonteCarlo (Geant3, Geant4, Fluka)
- The user can select at run time the MonteCarlo to perform the simulations without changing any line of the code

The results presented here have been simulated using Fluka

Calibration

The energy of HCAL is calibrated in 2 steps:

- Calibrate with single 45 GeV e⁻ raw Se and Ce
- Calibrate with single 45 GeV π^{-} and/or di-jet @ 91.2 GeV

$$\rightarrow \qquad \eta_c \,,\, \eta_s \text{ and } \eta_n$$

$$\eta_c = \left(\frac{e}{h}\right)_c \qquad \eta_s = \left(\frac{e}{h}\right)_s \qquad \eta_n \text{ is for neutrons}$$

First step calibration

Beam of 45 GeV e⁻

October 2, 2009

How Dual Read-out works

$$R(f_{em}) = f_{em} + \frac{1}{\eta} (1 - f_{em})$$

$$R = \frac{E_{RAW}}{E}$$

 f_{em} = em fraction of the hadronic shower

 η = em fraction in the fibers

hadronic energy:

How Dual Read-out works

October 2, 2009

Correlation between calorimeter signals

Second step calibration

di-jet @ 91.2 GeV case

October 2, 2009

Calibrated energy: di-jet @ 91.2 GeV case using Triple Readout

$$E_{HCAL} = \frac{E_s - \lambda E_C}{1 - \lambda} + \eta_n E_n$$

HCAL + ECAL resolution (single particles)

October 2, 2009

HCAL + ECAL resolution (di-jets)

HCAL + ECAL resolution: summary

Triple readout HCAL	Gaussian resolution stocastic term	constant term	
π	25.6%/√E	1.5%	
di-jet	29%/√E	1.2%	

Triple readout ECAL + HCAL	Gaussian resolution stocastic term	constant term	
e	1.7%/E ^{0.48}	0.1%	
π	19.1%/E ^{0.43}	0.3%	
di-jet	30.8%/√E	1.4%	

How the mass reconstructions of Physics particles is affected by the calorimeter performances?

2 jets	$e^+e^- \rightarrow Z^0 H^0$; $Z \rightarrow v \underline{v}$; $H \rightarrow q \underline{q}$	$M_{Higgs} = 119.60 \pm 0.07 \text{ GeV/c}^{2}$ $\sigma_{Higgs} = 3.83 \pm 0.07 \text{ GeV/c}^{2}$	35%/√E	HCAL
4 jets	$e^+e^- \rightarrow Z^0H^0$; $Z \rightarrow u\underline{u}$; $H \rightarrow c\underline{c}$	$M_{Higgs} = 117.9 \pm 1.2 \text{ GeV/c}^2$ $\sigma_{Higgs} = 4.48 \pm 1.6 \text{ GeV/c}^2$	41%/√E	HCAL
4 jets	$e^+e^- \rightarrow \chi_1^+\chi_1^- \rightarrow \chi_1^0\chi_1^0W^+W^-$	$M_{W} = 79.40 \pm 0.06 \text{ GeV/c}^{2}$ $\sigma_{W} = 2.84 \pm 0.06 \text{ GeV/c}^{2}$	31%/√E	HCAL + ECAL
4 jets	$e^+e^- \rightarrow \chi_2^{0}\chi_2^{0} \rightarrow \chi_1^{0}\chi_1^{0}Z^0Z^0$	$M_{z} = 89.55 \pm 0.20 \text{ GeV/c}^{2}$ $\sigma_{z} = 2.77 \pm 0.21 \text{ GeV/c}^{2}$	29%/√E	HCAL + ECAL
6 jets	e⁺e⁻->tt ->W⁺bW⁻b ->qqbqqb	$M_{top} = 174 .21 \pm 0.06 \text{ GeV/c}^2$ $\sigma_{top} = 4.65 \pm 0.06 \text{ GeV/c}^2$	35%/√E	HCAL

Look at the Corrado Gatto talk on the benchmark Physics studies

October 2, 2009

DREAM beam test setup

Look at the John Hauptman and Nural Akchurin talks in the Calorimetry session

DREAM

DREAM simulated in ILCroot

100 GeV π^- shower

Front view of the DREAM module in the simulation

Scintillation and Cerenkov signal distributions for 100 GeV pions

Note: DREAM integrate the signal in 80 ns, in the ILCroot simulation I integrate the signal in 350 ns

Scintillation signal vs. Cerenkov signal for 100 GeV pions

October 2, 2009

Individual resolutions for pions in the scintillation and Cerenkov signals

Energy resolutions for pions (calibrated energy)

The algorithm used for the reconstructed energies are not the same but equivalent

Conclusion

- The Dual/Triple Readout calorimetry is performing very well with data and simulations
- Need to work to understand the constant term in the energy resolution and make it more realistic
- Effect on the Physics is well understood
- Comparison of ILCroot simulations with DREAM test beam is exellent