GEM DHCAL Status

Jae ソu
For GEM/DHCAL Group
Oct. 2, 2009
ALCPG2009, UINKM

- Introduction
- What has been done?
- Multi-channel readout with Kip
- Large GEM chamber
- Plans
- Summary

Why GEM?

- Flexible configurations: allows small anode pads for high granularity
- Robust: survives $\sim 10^{12}$ particles $/ \mathrm{mm}^{2}$ with no performance degradations
- Fast: based on electron collection, ~few ns rise time
- Short recovery time \rightarrow can handle high rates
- Uses simple gas ($\mathrm{Ar} / \mathrm{CO}_{2}$) - no long-term issues
- Runs at relatively low HV ($\sim 400 \mathrm{~V}$ across a foil)
- Stable and robust operations

GEM-based Digital Calorimeter Concept

What have been done so far?

- Bench tested with various source and cosmic ray
- Used QPA02 chip based preamp
- Verified the signal shape, responses and gain

Took a beam test at a high flux electron beam

- First chamber built with 3 M's $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ GEM
- Used QPA02 chip based preamp
- Verified that the chamber can survive
- Took two beam tests at FNAL's MTBF
- Used QPA02 chip based preamp
- 8 GeV pion beams and 120 GeV proton beams
- Measured chamber responses, efficiencies and gain

Efficiency vs Threshold w/ 120GeV P

UTA GEM Chamber Gain

KPiX Analog Readout for GEM DHCAL

There are ~ 3000 bunches separated by $\sim 300 \mathrm{~ns}$ in a train, and trains are separated by $\sim 200 \mathrm{~ms}$.

Say a signal above event threshold happens at bunch n and time $T 0$.
The Event discriminator triggers in $\sim 100 \mathrm{~ns}$ and removes resets and strobes the Timing Latch (12 bit), range latch (1 b The Range discriminator triggers in $\sim 100 \mathrm{~ns}$ if the signal exceeds the Range Threshold.
When the glitch from the Range switch has had time to settle, Track connects the sample capacitor to the amplifier outr The Track signal opens the switch isolating the sample capacitor at $\mathrm{TO}+1$ micro s . At this time, the amplitude of the si
 while processing an event)
while processing an event)
The system is ready for another signal in ~ 1.2 microsec.
After the bunch train, the capacitor charge is measured by a Wilkinson converter.

80^{1}
 GEM-DHCAL/KPiX boards with Interface and FPGA boards

KPiX Self Trigger Threshold and Noise Scan

Cosmic Ray Data with External Trigger

GEM DHCAL Plans - I

Through late 2009

- 30 cmx 30 cm chamber
- Construct a new chamber with optimal gas flow design
- Complete characterization of the chamber with sources and cosmic rays using 64 channel KPiX v7

Gas Transparent Spacers

GEM+kPiX Fe ${ }^{55}$ and Ru ${ }^{106}$ Spectra

GEM DHCAL Plans - I

Through late 2009

- $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ chamber
- Construct a new chamber with optimal gas flow design
- Complete characterization of the chamber with sources and cosmic rays using 64 channel KPiX v7
- Characterize the chamber in particle beams
- Understand the chamber behaviors with DCAL chips (thru early 2010)
- $\quad 33 \mathrm{cmx100} \mathrm{~cm}$ unit chamber
- Finalize $33 \mathrm{~cm} x 100 \mathrm{~cm}$ ($32 \mathrm{~cm} \times 96 \mathrm{~cm}$ active area) large GEM foil silkscreen design and submit to CERN GDD
- Initial prototype tried in late Aug. 2009

Large GEM Foil Development with CERN

- The size of the foils are $33 \mathrm{~cm} \times 100 \mathrm{~cm}$, the same as the physical size of the unit chamber
- Active area is $33 \mathrm{~cm} \times 100 \mathrm{~cm}$
- Is this realistic to think of constructing a chamber with the same physical size foils?
- The design of large GEM foil completed and delivered to CERN GDD Workshop
- One-side etching technique successful
- CERN GDD workshop is working on prototype foil production

Large GEM Foil Design

Active area (yellow dashed)

Active area $319.9 \times 960 \mathrm{~mm}^{2}$ Chamber size $=330 \times 1000 \mathrm{~mm}^{2}$

Chamber outline (blue dashed)

Number of sectors $=32 \times 2=64$ (bottom layer has only one sector) Sector dimension $=9.9 \times 479.95 \mathrm{~mm}^{2}$

GEM DHCAL Plans - II

Late 2009 - Late 2010

- $33 \mathrm{~cm} x 100 \mathrm{~cm}$ thin GEM unit chambers
- Production and certification of $33 \mathrm{cmx100} \mathrm{~cm}$ foils
- Characterization of 1024 KPiX chips
- To be available in late 2009 to early 2010
- Use $30 \mathrm{~cm} x 30 \mathrm{~cm}$ the new GEM chamber
- Understand chamber behaviors with DCAL chips
- Begin construction and characterization of $33 \mathrm{~cm} \times 100 \mathrm{~cm}$ unit chambers
- One with anode board with available KPiX chips
- Remainder with DCAL Chips

33cmx100cm DHCAL Unit Chamber

2 mm steel strongback + thin cathode layer

GEM DHCAL Plans - III

Mid 2010 - Late 2011

- $33 \mathrm{~cm} \times 100 \mathrm{~cm}$ thin GEM unit chambers w/ DCAL chips
- Characterization with DCAL chip
- Complete production of fifteen $33 \mathrm{~cm} \times 100 \mathrm{~cm}$ unit chambers
- Construct five $100 \mathrm{~cm} \times 100 \mathrm{~cm}$ GEM DHCAL planes
- Using DCAL readout chips
- Beam test GEM DHCAL planes in the CALICE beam test stack together with RPC
- If available: TGEMs and RETGEMs
- Construction and characterization of a prototype chamber using an analog readout chip
- Beam test of TGEM prototype chamber

UTA's $100 \mathrm{cmx100} \mathrm{~cm}$ Digital Hadron Calorimeter Plane

GEM DHCAL Beam Test Plans

Phase I \rightarrow Completion of $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ characterization

- Late 2009 - Early 2010: using one to two planes of $30 \mathrm{~cm} \times 30 \mathrm{~cm}$ double GEM chamber with 64 channel KPiX7
Phase II $\rightarrow 33 \mathrm{cmx} 100 \mathrm{~cm}$ unit chamber characterization
- Early 2010 - Late 2010 at MTBF: Using available KPiX chips and DCAL chips
Phase III $\rightarrow 100 \mathrm{~cm} x 100 \mathrm{~cm}$ plane GEM DHCAL performances in the CALICE stack
- Late 2010 - Mid 2011 at Fermilab's MTBF
- Five 100 cmx 100 cm planes inserted into existing CALICE calorimeter stack and run with either Si/W or Sci/W ECALs and RPC planes in the remaining HCAL

Summary

- Good progress has been made reading out GEM chamber with 64 channel KPiX v7 chips
- Observed clean characteristic peaks from Fe ${ }^{55}$ and Ru ${ }^{106}$ sources
- Cosmic ray data taking and analysis in progress
- $30 \mathrm{~cm} \times 100 \mathrm{~cm}$ unit chamber construction proceeding
- GEM foil design completed and delivered to CERN \rightarrow Prototype foil production in progress
- Mechanical designs being worked out for constructing 1 mx 1 m planes for DHCAL testing

