

Current Status of Semi-DHCAL R&D in European

Vincent Boudry for

Manqi Ruan

on behalf of the SDHCAL CALICE group (CIEMAT, Ghent, IPNL, LLR, Louvain, Tsinghua, Tunis)

Case for a Semi Digital HAdronic CALorimeter

- 1 or 2 bits of information per cell
 - Finer granularity → 1×1 cm² × 48 planes
 - Ideal for a PFA approach
 - Cheaper, simpler, more robust detectors
 - GRPC, MGRPC, μMEGAS, GEM's
- Gaseous detectors
 - insensitivity to neutrons
 - narrower showers (99% of hits in 70×70 cm² for 100 GeV π)
 - suppression of big fluctuations
- Reconstruction of energy:
 - Counting: 3 thresholds
 - Topology: clustering

See note LC-DET-2004-029

Resolution studies

GLD Scint HCAL study by KEK Group

- 3 thresholds (0.5, 10, 100 MIP's)
- 1×1 cm² scintillator tiles

- $e^+e^- \rightarrow qq \text{ (uds)}$
 - $-\sqrt{s}$ = 91, 350, 500 GeV
- Assuming Perfect PFA
 - Improved jet resolution

GRPC in a DHCAL

Grid (Steel)

Absorber (2 cm)

ASIC (HARDROC1)

PCB

Pads (copper, 1 cm2)

Insulation (Mylar)

Anode coating($\sim 10 \text{ M}\Omega/\square$)

Glass plate (0.7mm)

Chamber wall (1.2mm)

Glass plate (1.1mm)

Cathode coating($\sim 10 \text{ M}\Omega/\square$)

Gas

Spacer (ceramic ball)

Industrialized easily

Semi-conductive paint (1)

- Many chambers successfully built using Statguard product
- Applied to large areas using paint brush up to now
- Recently established industrial contacts to investigate option of silk screen printing
- Covered several m² using this method → now build chambers

7

Semi-conductive paint (2)

- Statguard: disadvantages
 - Not produced specifically for silk screen printing
 - Hard to clean silk screens
 - Long time constant for stable resistivity
- Investigating new product: colloidal graphite
 - Very stable resistivity
 - Specifically produced for silk-screen printing
 - BUT needs large oven or UV curing facilities

Statguard time stability - different layer thicknesses Calorimeter for ILC

Gas circulation study

improve on gas distribution system in new chamber design

Old chamber

Gas velocity maximal ~ 1mm/s

Prototypes: Mini DHCAL and 1 m²

GRPC:

- 8×8, 32×8, 50×32, 100×32, 100×100 with 1 cm²-pad : already produced

(with different option) and tested.

MGRPC

32×8, 100x100, produced & tested

25/09/2009

Electronics: HarDROC (Hadronic Rpc Detector Read Out Chip)

- AMS SiGe 0.35μm, 16 mm²
- 64 channels
- Digital/analogue output
- 2 independent thresholds
- low consumption
 - < 10 μ W/ch
 - Power pulsing
- Digital memory
 - 128 events
 - ASIC ID (8b), BC ID (24b), hits
- Large gain range (6bits)
 - Channel wise
- X-talks < 2% 25/09/2009
 - Threshold > 10 fC

* DIRAC: Another ASIC developed in IPNL/LAPP aims at a threshold of 3 fC

Mini DHCAL

- 8-layer, 800 μ thick PCB buried and blind vias x-talk <0.3 %
- 4 hardroc chips
- Readout FPGA → USB
- 8×32 pads detector

Acquisition modes: different modes are allowed:

- a) Train (ILC mode)
- b) External trigger :cosmic rays & test beam

Data output:
digital and analogue

The 1 m² project

The 1 m² project

DIF

- 10-layer board (6 for signals)
 designed and prototype produced
- FirmWare & SoftWare operationnal and tested in beam (with 4 HR µMegas card)

ASU

- 8-layer board designed and produced
- 500×33.3×1.2 mm³
- Connections between adjacent PCB foreseen
- ASICs were tested and plugged

Software

Acquisition software based on US/XDAQ developed

25/09/2009

1 m² of equipped detector

25/09/2009

DAQ Schematic view

DAQ software (Xdaq framework)

DAQ capabilities

3 modes to operate the DAQ:

- *Manual mode*: all functions, commands and registers of one or several DIF(s) are accessible one by one (mainly used for debug purpose)
- Semi Automated mode: More complex functions of one or several DIF(s) can be performed, ie send slow control, start acquisition
- Automated mode : All behavior is driven by main finite state machine

2 trigger modes:

Standard mode :

Hardrocs store data on the external trigger Data are sent to the DAQ PCs when RAM is full

Beamtest Mode :

Hardrocs store all valid data (internally autotrigged)
Hardrocs stop storing on external trigger (i.e. common stop) and
send data to DAQ PCs

LCIO format for reconstructed DHCAL Calorimeter hits (proposal v0.01)

```
back of envelop discussion
EVENT::RawCalorimeterHit
                                                              V. Boudry, G. Grenier, R. Kieffer
   int _cellID0:
                           // Chan (64 ==> 6b)
                             // + Asic (max 420 ==> 9-10b)
                             // + Dif_Id (48-144 ==> 7-8b)
                             // + Module_Id (40 Barrel + 24 Endcap ==> 6b)
                             // == 28-30b
                       // Time2Previous in BC ==> 24b (remain 8b) (CHBIT_ID1 must be set)
   int _cellID1:
   int _amplitude; // 3 Thr ==> 2b (remains 30)
   int _timeStamp;
                        // Rec Time on 32b wrt (Spill start or Trigger)
EVENT::CalorimeterHit
// Recontructed Hits
   int _cellID0; // Idem RAW
   int _cellID1; // Idem RAW (CHBIT_ID1 must be set)
   float _energy; // Rec Energy
   float _time; // time from ref (in ns).(LCIO::RCHBIT_TIME must be set)
   (float _position [3]); // Position (unit not fixed) (LCIO.CHBIT_LONG must be set)
   int _type;
                         // Deposit type (mip, EM, noise, ...)
   EVENT::LCObject * _rawHit; // Link to RAW hit
One also needs the mapping functions:
                                      int[3] GetIJK(cellID):
                                      float[3] GetXYZ(cellID):
Error on Energy => to be recalculated, or integrated to energy.
```

TB Performances:

	Time	Statistic	Detector
PS T10	17-24 July, 2008	260k	Mini DHCAL
PS T9	28 Jul - 4 Aug, 2008	80k	Mini DHCAL
PS T9	7-12 Nov, 2008	65k	Mini DHCAL + 1m2
PS T9	18 Jun - 8 Jul, 2009		Mini DHCAL + 1m2
SPS H4	31 Jul - 8 Aug, 2009		Mini DHCAL + 1m2

2009 SPS CERN TB Setting

Mini DHCAL: Event Selection

Mini DHCAL: HV Scan

- DAC's Thresholds: lower 120 fC / higher 450fC
- Plateau: 7.2 to 8 kV
 - -> Efficiency between 80 and 98%
- Lower multiplicity is preferred.
 - -> Best ratio multiplicity/efficiency: around 7.4 kV
- Until now the licron coated detector seems to be the best candidate:
 - -> it has the **lowest multiplicity** and shows **very good efficiency** performance.

Mini DHCAL: Threshold Scan

- Multiplicity moving as expected => lowering as threshold increases.
- Efficiency decreasing down to 80% at 1.1 pC threshold.

Mini DHCAL: Hadronic shower

Number of hits in each detector

Hadronic showers are mostly uncontained in Mini DHCAL but these profiles give a first idea of shower development, and energy deposition.

Muon contamination

Muon contamination area

kieffer@ipnl.in2p3.fr

Mini DHCAL: with Semi conductive glass

- Cooperation with Tsinghua University:
 Provide us with semi-conductivity glass 10¹⁰ Ω/cm;
- 2 chambers with 32*8 pads: thin: 1.1 mm at both side + licron coating & thick: 1.1mm on cathode + 0.83 mm at readout + statguard coating
- Semi conductivity glass has good efficiency at high event rate (>10kHz/cm²), while classical glass has significant efficiency drop when event rate exceed 100Hz/cm²2

25/09/2009

Mini DHCAL: with CO₂ gas

- Shallower raise as with Isobutane
- wrt to standard GRPC wider distribution from the thick semiconductive glass

1 m²: beam profile

HV connection

Pads over (low) threshold

DAQ successful in testbeam mode With 3 DIFs synchronised **Up to 93% efficiency**

pion /muon beam

Some issues under investigation

Some noise in the HV connector region

Next step: 1 m³ prototype

The aim is to build a realistic prototype, validating the technological solution we propose for the ILD concept.

Technological prototype is made with:

- 40 planes of 1m²
- One plane composed by:20 mm s.steel absorber + 6 mm GRPC/PCB
- A mechanical structure supporting the planes.
- A parallel gas distribution system.

Important points:

- Mechanical structure development:
 1m³ of (Absorber+GRPC) is about 6 ton weight.
- Use of gas system with re-cycling option.
- Semi Digital readout of 368.640 channels:
 DAQ, event building, & data storage.

25/09/2009

1 m³: shower containment

- With a 1m³ DHCAL, hadronic shower could be mainly contained, even for high energy pions (about 100 GeV).
- We already try to evaluate the energy deposition to help the 1m³ design.
- The 40 planes of 9216 channels each, will permit us to have the complete profile of the showers, with a very high granularity.
- As the HARDROC2 will have 3 thresholds, we try to evaluate the number of fired pads for different thresholds values, to better reconstruct the energy.

25/09/2009

MC Digitization: Estimate the induced Charge

16/09/2009

Digitization with 100 GeV Pion

ILD Integration

- Simulations were done with Mokka software integrating DHCAL geometry.
- Event produced: single klong & uds.
- First analysis was done using Marlin with single threshold at 0.1 MIP in Mark Thomson's PFAnalysis module.
- Particle Flow Algorithm need to be optimized to use the full potential of a multi threshold DHCAL.
- More work has to be done for it.

MC: Full Detector Occupancy study

	Barrel	Barrel	EndCap	EndCap	Ring	Ring
	N_{hits}	N_{asic}	N_{hits}	$N_{\rm asic}$	N_{hits}	$N_{\rm asic}$
e⁺e⁻→qq /	207.6	124.6	117.8	77.8	6.7	4.5
GigaZ,30evt/s	6.2k/s	3.7k/s	3.5k/s	2.3k/s	201/s	135/s
	0.1/s	0.05/8	0.1/s	0.06/s	0.036/s	0.02/s
Minimal bias	0.78	0.64	20.2	17.0	0.038	0.033
GigaZ,10evt/s	7.8/s	6.4/s	202/s	170/s	0.38/s	0.33/s
			0.06/s	0. 05/s		
Minimal bias	1.06	0.91	29.7	25.1	0.058	0.05
Nominal	700/s	600/s	19.6k/s	16.6k/s	38.3/s	33/s
660evt/s			4.6/s	4/s		

Black: expected N_{hits}/N_{asic} per event;

Blue: expected N_{hits}/N_{asic} per second;

Red: N_{hits}/N_{asic} per second on the hottest Asic

21

MC Simulation: our RPC has sufficient rate capability!

22/01/2009

Conclusions & perspectives

- A Semi-Digital Gaz Hadronic Calorimeter with embedded readout is a very promising candidate for future linear colliders experiments
- Building ILC-like large GRPCs is now a controlled technique
 - Electronics readout for 1m² is debugged and works for Hardroc 1 and Hardroc 2
 - Mechanical structure to hold GRPC+ equipped PCB has been successfully used in testbeam.
- Another equipped 1m² with HR2 is under preparation
- Simulation and threshold optimization progress in parallel
- A technological prototype "1 m³" (RPC and/or MGRPC) is funded and expected in 2009-2010

25/09/2009