

Analysis of Small RPC DHCAL Prototype Data

(noise and cosmic ray)

Environmental Dependence

- Gas Flow Dependence
- Secondary signals
- Long-term Stability

Qingmin Zhang

HEP Division, Argonne National Laboratory IHEP, Beijing

LCWA09, Albuquerque, New Mexico

Friday, October 02, 2009

Motivations

- A competitive candidate for digital hadron calorimeter
- ✓ Cheap, simple structure, easy to build large-area detectors
- Gaseous Detector with flowing working gas:
- ✓ It's observed environmental conditions affect RPC's performance.
- Previous experimental studies from another groups are limited in efficiency only
- Important for future DHCAL operation
- It's needed to measure the effect and understand it, and in the future this information will be important for operating a Digital Hadron Calorimeter

• Helpful to understand the working mechanism of RPCs

✓ This research is meaningful academically

Setup and Configuration

Environmental dependence

Data Collection

Since the changes of environmental conditions are relatively small, A linear approach has been implemented.

 $F_i(T,p,H) = F_{i,0} + b_{T,i}\Delta T + b_{P,i}\Delta p + b_{H,i}\Delta H \qquad \text{ with } i = N, \epsilon, \mu$

Standard Conditions:T=22.5°C,P=100kPa,H=40%

Performance Vs. Environmental Conditions

RMS Comparison

- No effect on improvement of correction performance with Humidity included means that
 RPC's performance has no dependence on humidity
- Δp and ΔT corrections reduce
 the width of the distributions
 significantly except....

Efficiency: 2-glass RPCs(minor) Multiplicity:1-glass RPC(stable with environmental conditions)

Slope parameters

P=100kPa

T=22.5°C

- Except pad multiplicity for exotic RPCs, all the other shows
- T↑->N,ε,μ↑ p↑ ->N,ε,μ↓

b_T , $-b_P$ and $|b_T/b_P|$

Left: b_T and $-b_P$ from linear fits are consistent for all chambers.

Right: $|b_T/b_P|$ is calculated to understand the mechanism of this phenomenon, which will be discussed later.

Observation: noise/temp. dependence related to the noise rate at standard conditions (good RPCs)

Percentage Change of the Performance Vs Unit Change of Temp./Pressure

Performanc e variable	Cha	nges for ∆T :	= 1 ⁰ C	Changes for $\Delta p = 100 Pa$			
RPC design	2-glass		1-glass	2-glass		1-glass	
	Good(%)	Damaged(%)	(Good)(%)	Good(%)	Damaged(%)	(Good) (%)	
Noise rate	14 ± 1.6	42 ± 1.2	13 ± 1.8	0.70±0.037	1.73±0.028	0.02±0.694	
Efficiency	0.26±0.051	0.28 ± 0.056	0.98 ± 0.078	0.06±0.001	0.08±0.001	0.32±0.001	
Pad multiplicity	2.0±0.09	2.0±0.09	0.035±0.0250	0.30±0.002	0.26±0.002	0.003±0.0010	

Corrected data points

The correction smoothed out the bumps and dips in the measurements.

➢For the damaged RPCs, the noise rate is overcorrected, which needs further study to understand.

 correction has a minor effect for the 2-glass
 RPCs being operated on the efficiency plateau

Due to its stability in multiplicity, correction has no effect on the 1glassRPC.

Discussions on environmental dependence

Gas gain and Primary ionizations depend on Mean free path (or the density of working gas)

$$\lambda = \frac{KI}{\sqrt{2}\pi d^2 N_A P}$$

$$f(\frac{T}{p}) \approx f(\frac{T_0}{p_0}) + f'(\frac{T_0}{p_0}) \times (\frac{T_0}{p_0} \times \frac{\Delta T}{T_0} - \frac{T_0}{p_0} \times \frac{\Delta p}{p_0}) = f(\frac{T_0}{p_0}) + b_T \Delta T + b_P \Delta p$$

$$b_{T} = f'(\frac{T_{0}}{p_{0}}) \times \frac{T_{0}}{p_{0}} \times \frac{1}{T_{0}}, b_{P} = -f'(\frac{T_{0}}{p_{0}}) \times \frac{T_{0}}{p_{0}} \times \frac{1}{p_{0}} \quad f = N, \mathcal{E}, \mu.$$

$$|\frac{b_T}{b_P}| = \frac{p_0}{T_0} = \frac{100kPa}{295.65\text{K}} = 338 \, pa \, / \, K$$

338 Pa pressure change equals 1^oC temperature change in affecting the performance

Noise: ~2000, migration of electrons out of the cathode (only related to temperature) ✓ Efficiency: ~340, consistent with this calculation Multiplicity: ~700, need further study.

Performance Vs. Gas Flow Rate

Studies of the performance as a function of gas flow rate shows no effect on the efficiency, but a dramatic increase in noise rate and pad multiplicity for flow rates below 0.28 cc/min/RPC corresponding to about 8.4 gas volumes/day.

This effect is most likely related to the contamination from avalanches.

Secondary signals

2-glass RPCs

	$\Delta d=0$	$\Delta d > 0$ (can cross fishing line)		
$\Delta T=1$	0%	18.8%->3.4% with threshold		
ΔT>1	14.9%->0% with threshold	18.2%->0.1% with threshold		

1-glass RPCs

	$\Delta d=0$		$\Delta d > 0$ (can cross fishing line)		
ΔT=1	0%		1.1%->0.3% with threshold		
Δ T> 1	14.2%->0% with threshold		0.6%->0.4% with threshold		
Cathode (positive ions?)			(Anode difference, UV photons?)		
Slow drift velocity of positive ions +space charge effect → only appear certain time after the initial avalanches and the amplitude is very small (the ratio is very sensitive to threshold)		A possible explanation: UV light (suppressed by the material of readout pads for 1-glass RPCs)			
		Fisl	hing line, Insulating tubing : transparent to UV?		

Long-term Stability

 In twelve months of almost continuous operation, no aging has been observed.

Summary

- No evidence suggests the RPC's performance depends on humidity.
- Corrections on environmental conditions have worked very well except some exceptions, most of which we have understood.
- 1-glass RPC shows its constant and ideal (~1.0) pad multiplicity.
- Lower gas flow rates increase the noise rate and pad multiplicity due to the contaminants from avalanches
- Secondary signals have been partially understood and need further check to confirm the explanation.
- The RPCs have been monitoring continuously for 12 months, and we haven't found any aging effect!

The End

Thanks!

BACKUP

18

Ratio for two designs(secondary avalanches)

Check the secondary signals crossing fishing line Run203597

The values used for estimation of accidental coincidence :

1.Average Noise Rate: 10.4Hz/cm²(including#1and#2)

1.4H/cm^2 (w/o #1and#2)

2.Distance: no common fired pad

3.Time window: 100ns or 1000ns after the initial signal.

4.Position requirements for original signals:

1)x >= 12||x <= 3 2)y >= 12||y <= 3

5.Position requirements for secondary signals

1)4<x<11 2)4<y<11

Comparison

Orig.	Sec.	RPC#	TW	#orig.	Est. Acc.	Result from data
X 4(1)	X5(1)	8	100	514	10-4	4.1%
X 4(1)	X5(1)	8	1000	514	10 ⁻³	16.7%
X 4(1)	X5(1)	6	100	361	1.4x10 ⁻⁵	3.9%
X 4(1)	X5(1)	6	1000	361	1.4x10 ⁻⁴	15.2%
Y4(2)	Y5(2)	8	100	547	10-4	1.5%
Y4(2)	Y5(2)	8	1000	547	10 ⁻³	16.6%
Y4(2)	Y5(2)	6	100	377	1.4x10 ⁻⁵	1.1%
				943(202921)		0.0%(run202921)
Y4(2)	Y5(2)	6	1000	377	1.4x10 ⁻⁴	14.9%
				943(202921)		0.1%(run202921))

X 4(1) means the position requirement for the original avalanches is $x \ge 12 ||x| \le 3$, see the previous slides.

X 5(1) means the position requirement for the secondary avalanches is 4 < x < 11, see the previous slides.

Run 202921 is run at normal gas flow.