Development of large area MICROMEGAS chambers for digital hadronic calorimetry

Jan Blaha

LAPP, Annecy-le-Vieux

This work was performed within the CALICE collaboration

ALCPG09, Sep. 29 - Oct. 3 2009, Albuquerque, New Mexico

Outline

1 Introduction

- 2 MICROMEGAS chambers
- 3 Electronics developments
- 4 Simulation studies
- **5** MICROMEGAS development for DHCAL
- 6 MICROMEGAS prototypes performance
- 7 1m² project
- 8 Conclusions

→ Ξ →

Image: Image:

3

INTRODUCTION

<ロ> (日) (日) (日) (日) (日)

Э

999

Introduction

- MICROMEGAS for a DHCAL:
 - fast, radiation hard, good aging properties, robust, large area, high gas gain, spark proof, standard gas mixture (Ar, iC₄H₁₀, CO₂)
 - \blacksquare small avalanche charge \rightarrow sensitive front-end electronics

- R&D activities at LAPP:
 - fabrication and test of analog readout MICROMEGAS for characterisation
 - fabrication and test of digital readout MICROMEGAS
 - front-end chips used: HARDROC, DIRAC
 - simulation, DAQ (DIF), mechanics (SiD), electronics (DIRAC)

Requirements on DHCAL

- High efficiency and low multiplicity detector
- Very fine granularity (down to 1 cm^2 cell size readout $\rightarrow \\ \sim 30 \times 10^6 \text{ channels})$
- Very low power consumption

- MICROMAGAS detector
 - Simple and robust
 - Bulk MICROMEGAS industrial process
 - Low voltage (< 500 V)
 - 1 cm² readout cell size
 - Needs for low noise electronics
 - Needs for reliable sparks protection

MICROMEGAS CHAMBERS

イロト 人間ト イヨト イヨト

3

GASSIPLEX readout chambers

- Chamber geometry
 - 6×16 and 12×32 pad anode PCBs (pad size: 1 cm²)
 - \blacksquare Bulk MICROMEGAS: 128 μm gap mesh laminated on PCB
 - Plastic frame and steal cover define a 3 mm drift gap

- Analog readout electronics
 - GASSIPLEX chip: 16 channels with preamplifier and shaper
 - 4 boards with 6 chip each, multiplexed output
 - Digitization by 10 bit ADCs connected to a PC
- Ar/ iC_4H_{10} 95/5: high gains (20·10³) at moderate voltages (≤ 450 V)

HARDROC and DIRAC readout chambers

- 2 bit digital readout of 64 channels per chip
- VFE electronics embedded below pad PCB
- DIRAC readout:
 - The first protype with ebbeded electronics
 - 1 chamber, 8×8 pads readout by 1 DIRACv.1 chip

HARDROC readout:

- 4 chambers, 8×32 pads readout by 4 HARDROCv.1 chips
- 2+4 chambers, 32×48 readout by 24 HARDROCv.2 chips

Jan Blaha (LAPP, Annecy-le-Vieux) Devel

Development of large area MICROMEGAS

ELECTRONICS DEVELOPMENTS

< 日 > < 同 > < 回 > < 回 > < 回 > < 回

3

Detector InterFace (DIF)

Calice DAQ Scheme:

■ DIF ⇐⇒ front-end electronics: data transfer, very front-end chip control

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ Ξ →

3

10 / 33

• Compatible with HARDROC, DIRAC, SPIROC, SKYROC

Detector InterFace (DIF)

- Fully designed at LAPP (J. Prast, S. Cap)
- First intermediate board between ASU and DAQ
- Programmable via VHDL code
- The VHDL code implemented at LAPP (G. Vouters)
- Many firmwares available
- Used in 2008 and 2009
 Eu-DHCAL beam tests:
 MICROMEGAS and RPC

DIRAC characterization and development

- DIRACv.2 (IPNL and LAPP)
 - 3 thresholds programmable on 8 bits
 - Dynamic range: 50, 100, 200 fC or 10 pC
 - $\blacksquare~10\,\mathrm{mW}$ per channel in pulsed mode
 - Test results from LAPP
 - \blacksquare Linearity $\pm 2\%$ on 20–200 $\rm fC$ range
 - \blacksquare Noise less than 5 fC at 5 σ
 - Very small gain dispersion ⇒ No calibration needed for a DHCAL!
 - Best power pulsing performance (stable at 2.7 μs power-on time)
 - Very low threshold achievable (<10 fC)
 - First digital ASIC embedded on a bulk MICROMEGAS: tested successfully in 2008 beam test
 - DIRACv.2 for 1 m² foreseen for 2010

SIMULATION STUDIES

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Simulation studies

- Study of DHCAL physics performance
 - Better understanding of digital calorimetry generally
 - The first qualitative view on DHCAL global performance
 - Study of the main calorimeter characteristics
 - Comparison of various absorber materials
 - Comparison of different readouts
 - Simulation of test beam experiments
 - Optimization of the test beam set-up
 - Comparison with measured data
 - High energy physics simulation
 - Calorimeter requirements for CLIC detector
 - Physics at 3 TeV

For more see J.Blaha's talk given in the simulation and reconstruction session this Friday morning!

MICROMEGAS DEVELOPMENT FOR DHCAL

Jan Blaha (LAPP, Annecy-le-Vieux) Development of large area MICROMEGAS September 28, 2009 15 / 33

→ Ξ →

Data acquisition for analog readout

CENTAURE (SUBATECH)

- Used for analog data acquisition and on-line monitoring
- GASSIPLEX readout (any number of boards)
- MICROMEGAS Mesh readout

Data acquisition for digital readout

X-DAQ (IPNL)

- Used for fast data acquisition
- Works for HARDROCv.1 and v.2
- Development for DIRAC is ongoing

- Fast running
- html control interface
- Many annex files (xml, cfg)
- Need expert on site

LabView (LAPP)

- Home made software for calibration
- Works for HARDROCv.1. HARDROCv.2 and DIRAC chips
- Development for cosmic data acquisition ongoing

Analysis framework

MICROMEGAS Framework user friendly analysis framework
 Works with all type of test beam data, using SVN

September 28, 2009 18 / 33

3

Sac

MICROMEGAS PROTOTYPES PERFORMANCE

Jan Blaha (LAPP, Annecy-le-Vieux) Development of large area MICROMEGAS September 28, 2009 19 / 33

イロト イポト イヨト イヨト

3

MICROMEGAS environmental study

- Two-week long data acquisition
- 5.9 $\rm keV$ photons from an $^{55}{\rm Fe}$
- Dependency of response versus P and T
- Method for gain correction established:

$$\begin{split} f_x &= 1 - C_x \cdot \Delta(x) \\ C_P &= (-0.61 {\pm} 0.01)\% mbar^{-1} \\ C_T &= (-1.37 {\pm} 0.01)\% K^{-1} \\ C_{P/T} &= (-164 {\pm} 1)\% Kmbar^{-1} \end{split}$$

MICROMEGAS environmental study

- Two-week long data acquisition
- 5.9 keV photons from an ⁵⁵Fe
- Dependency of response versus P and T
- Method for gain correction established:

$$f_{x} = 1 - C_{x} \cdot \Delta(x)$$

$$C_{P} = (-0.61 \pm 0.01)\% mbar^{-1}$$

$$C_{T} = (-1.37 \pm 0.01)\% K^{-1}$$

$$C_{P/T} = (-164 \pm 1)\% Kmbar^{-1}$$

Test beam with analog readout 2008 CERN PS/SPS GASSIPLEX chambers

- Overall gain disparity $\approx 11\%$ (384 ${\rm cm}^2$)
- \blacksquare Efficiency = 97% at $1.5\,{\rm fC}$
- \blacksquare Maximum Multiplicity < 1.1 at $1.5\,{\rm fC}$

Test beam with analog readout 2008 CERN PS/SPS GASSIPLEX chambers

- Overall gain disparity $\approx 11\%$ (384 ${\rm cm}^2$)
- \blacksquare Efficiency = 97% at $1.5\,{\rm fC}$
- \blacksquare Maximum Multiplicity < 1.1 at $1.5\,{\rm fC}$

Test beam with analog readout 2009 CERN PS, GASSIPLEX chambers

- Lateral electron shower profile
- Longitudinal electron shower profile
- Analysis of hadron showers is ongoing

Test beam with analog readout 2009 CERN PS, GASSIPLEX chambers

- Lateral electron shower profile
- Longitudinal electron shower profile
- Analysis of hadron showers is ongoing

Test beam with digital readout 2008 CERN SPS, DIRAC chamber

- First DIRAC operative test
- Very first test of bulk MICROMEGAS with embedded digital readout
- fully successful
- Raw multiplicity of 1.1

Test beam with digital readout 2008 CERN SPS, DIRAC chamber

- First DIRAC operative test
- Very first test of bulk MICROMEGAS with embedded digital readout
- fully successful
- Raw multiplicity of 1.1

Test beam with digital readout 2008 CERN SPS, DIRAC chamber

- First DIRAC operative test
- Very first test of bulk MICROMEGAS with embedded digital readout
- fully successful
- Raw multiplicity of 1.1

Test beam with digital readout 2008 CERN PS, HARDROCv.1 chambers

- Beam profile observed w and w/o scintillator coincidence
- Bad chip configuration
 ⇒ data mostly corrupted
- Raw efficiency estimated around 60%

Test beam with digital readout 2008 CERN PS, HARDROCv.1 chambers

- Beam profile observed w and w/o scintillator coincidence
- Bad chip configuration
 ⇒ data mostly corrupted
- Raw efficiency estimated around 60%

Test beam with digital readout

Ongoing tests

- Calibration
 - LabView software
 - All S-curves processed (calibration constants almost ready)
 - HARDROCv.1 with optimal calibration is ready
- 2009 Sep. test beam
 - X-DAQ is up to date
 - Scintillator trigger
 - High rate
 - Calibration applied

- Chambers in bean
 - 32 × 8 chambers with HARDROC.v1
 - test box with 48 × 32 ASU with HARDROC.v2

25 / 33

- 6×16 and 12×32 with GASSIPLEX
- Stack of 8x8 DIRACv.2 MICROMEGAS for efficiency and multiplicity measurements

Jan Blaha (LAPP, Annecy-le-Vieux) Development of large area MICROMEGAS September 28, 2009

1M^2 project

Engineering design

Engineering design

990

Engineering design

[Chamber cross section]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

■ Every ASU for 1m² will pass:

- Electronics verifications
- Mesh cooking with high voltage
- Test with an ⁵⁵Fe source and/or cosmics)

Module test box:

- Plexiglass lid for mesh cooking
- Aluminum lid for X-rays injection
- Drift cathode on the aluminum lid ⇒ MICROMEGAS with a 3 cm drift gap
- Clean room available for handling naked mesh ASU

First tests of the MICROMEGAS HARDROCv.2 at LAPP

- Two 32×48 pad ASUs tested with an ⁵⁵Fe source
- Each ASU has 24 HARDROCv.2 (1/6 m² physics prototype)

- Test and establish an assembly process
- Training of assembly procedure
- Perform mechanical tests
- Verify gas tightness

- 一司

- Test and establish an assembly process
- Training of assembly procedure
- Perform mechanical tests
- Verify gas tightness

Image: A match a ma

- Test and establish an assembly process
- Training of assembly procedure
- Perform mechanical tests
- Verify gas tightness

- Test and establish an assembly process
- Training of assembly procedure
- Perform mechanical tests
- Verify gas tightness

- Test and establish an assembly process
- Training of assembly procedure
- Perform mechanical tests
- Verify gas tightness

- Test and establish an assembly process
- Training of assembly procedure
- Perform mechanical tests
- Verify gas tightness

- Test and establish an assembly process
- Training of assembly procedure
- Perform mechanical tests
- Verify gas tightness

- 1 week needed for assembling a 1m²
- 1/3 of the 1m² will be equipped at first
 ⇒ will hold only two ASUs
- Physics prototype equipped with 2 ASU will be tested during next test beam

CONCLUSIONS

ヘロト 人間ト 人間ト 人間ト

€ 990

- MICROMEGAS performance is in agreement with the DHCAL requirements
- Digital front-end electronics is ready
- MICROMEGAS related collaborators: CERN (bulk MICROMEGAS) and Saclay (test beams)
- Eu-DHCAL collaborators: CIEMAT, IPNL, LAL, LLR
- Very good progress toward a technological prototype (Eu-DHCAL 1m³)

C. Adloff et al.: *MICROMEGAS chambers for hadronic calorimetry at a future linear collider, arXiv:0909.3197v1, submitted to JINST, 2009*

→ Ξ →