Lepton ID in the SiD LOI benchmarking

Ron Cassell LCWA09

Outline

 Standard Reconstruction Muons: Electrons:

High P extension
 Electrons in ZH events:
 Full energy taus:

Muon identification: algorithm

- Find mip stubs in the Muon calorimeter
 Require 5 hits -> improves overall purity,
 at expense of loss of efficiency for 5-15 GeV
 muons.
- Extrapolate reconstructed Tracks to end of hadron calorimeter.
- Match using tangent of extrapolated track with direction of innermost 2 muon hits.
- Efficiency/purity depends on event type (μ/π ratio, confusion)

$$SM = 96.9\%$$

$$ZH = 98.3\%$$

$$ttbar = 96.6\%$$

For E > 15 GeV:

$$SM = 97.3\%$$

$$ZH = 98.5\%$$

$$ttbar = 97.2\%$$

Muon ID: results

- Above 15 GeV, ~ 97% eff and purity for SM events.
- Better for events with larger μ/π ratio.
- Could be improved for lower momentum, but no critical use case in benchmark analyses.
- Used as is for all benchmark analyses.

Electron identification: algorithm

- PFA: Extrapolate Track to EM calorimeter.
 Match Track with EM cluster.
 If EM cluster IDed as photon and E/P match, ID as electron.
- High P (P > 15 GeV) extension:
 Relax cluster-track match criteria.
 Relax photonID requirement: Use shape parameters of cluster.

For E > 15 GeV:

SM = 84.7% ZH = 88.0% tautau = 85.6% ttbar = 87.8%

For E > 15 GeV:

SM = 95.4% ZH = 98.4% tautau = 94.9% ttbar = 96.1%

Electron ID: results

- Above 15 GeV, ~85% efficiency and 95% purity for SM events.
- Used in standard reconstruction for benchmark analyses.
- Most of inefficiency arises from separation problems with hadron fragments.

Isolated high P electron ID

- Some processes depend critically on high P lepton ID.
- e+e- -> e+e-H; μ+μ-H, √s=250 GeV Leptons mostly isolated
- $e+e--> \tau+\tau-$, $\sqrt{s}=500$ GeV Leptons completely isolated
- ttbar -> bWbW, W->qq, √s=500 GeV Isolation a problem, no improvement attempted in rejecting leptonic background

Isolated electron ID

- Basic algorithm: For tracks not IDed as e:
 P > 10GeV.
 Find all HCal hits within 25d cone.
 - Sum the energy of those hits.
 - If Sum < .04*P -> call it an electron.
- Check with eeH events.

Failed electron ID: electron energy

Plotted in red is the energy distribution of missed electrons from the LOI reconstruction. Overlayed in green is the improved e ID. The separation of the 2 curves is the gain from the improved ID algorithm.

Electron ID efficiency:

Old = 89.6%, New = 98.0%

Purity of recovered electrons = 98.8%

Isolated electron ID

- eeH events:
- Significant improvement in efficiency.
- No loss in purity.
- For analysis, set minE for adding electron to 15 GeV. Gain in purity, virtually no loss in efficiency.
- Checked SM sample and ttbar events: purity of added electrons >= purity of existing IDed electrons.

Brem recovery in eeH analysis

- Simple algorithm: Add photons to electron if M(eγ) < Mcut.
- For these events, Mcut set to .7 GeV to maximize # events passing Zmass cut.

$$e+e--> t+t-$$
, $\sqrt{s}=500$ GeV

- Selection
- Improved electron ID
- Decay mode identification

Selection of full energy tau pair events

- Event cuts include: 1 < #Tracks < 7, 40GeV<Evis<450GeV
- Use standard PFA reconstruction, form tau jets.
- Require opening angle between jets > 178°
- Could improve on PFA reconstruction for these low multiplicity events, but would require running on full SM sample, not feasible on LOI time scale.

Tau pair selection (cont)

- Use isolated electron ID, with hemisphere cut on HCal hits.
- Remove 2-prong events where both are IDed as electrons(Bhabha background) or both IDed as muons.
- ~18% of all tau pair events selected.

Tau decay mode identification

- Decay modes of interest:
- All π± or π^o
- Alternate reconstruction.
- Cluster all calorimeter hits
- · Assign to nearest tau jet
- ID photons, assign non-photon clusters to charge tracks.
- Check E/P, if inconsistent look for missed photons.
- Have only π's and photons as ReconstructedParticles.

$e^-\bar{\nu_e}\nu_{\tau}$
$\mu^- \bar{\nu_\mu} \nu_\tau$
$\pi^-\nu_{\tau}$
$\rho^- \nu_{\tau} \rightarrow \pi^- \pi^0 \nu_{\tau}$
$a_1^-\nu_{\tau} \rightarrow \pi^-\pi^0\pi^0\nu_{\tau}$
$a_1^-\nu_{\tau} \rightarrow \pi^-\pi^+\pi^-\nu_{\tau}$

Decay mode ID criteria

- a π^o is a pair of photons satisfying 0.06 GeV
 M2γ < 0.18 GeV
- If criteria not met, alternate photon reconstructions tried. They include combining 2 nearest photons, changing the photon ID of clusters to add or remove photons.
- E/P checked at each iteration.

decay mode	# γ	$\# \pi^0$	EPcut	other criteria
$e^- \bar{\nu_e} \nu_{\tau}$	0	0	-	HCAL energy $< 4\%$ of track energy.
$\mu^- \bar{\nu_\mu} \nu_\tau$	0	0	-	identified as μ by PFA
$\pi^- \nu_{\tau}$	0	0	2.5	-
$\rho^- \nu_{\tau} \rightarrow \pi^- \pi^0 \nu_{\tau}$	1	0	2.2	$0.6~{\rm GeV} < M_{\rho} < 0.937~{\rm GeV}, E_{\gamma} > 10~{\rm GeV} \label{eq:equation:equation}$
$\rho^-\nu_\tau \to \pi^-\pi^0\nu_\tau$	2	1	2.2	$0.4~{\rm GeV} < M_{\rho} < 0.93~{\rm GeV}$
$a_1^- \nu_\tau \rightarrow \pi^- \pi^0 \pi^0 \nu_\tau$	3	1	2.2	$0.8 \; {\rm GeV} < M_{a_1} < 1.5 \; {\rm GeV}, E_{\gamma} > 10 \; {\rm GeV}$
$a_1^-\nu_\tau\to\pi^-\pi^0\pi^0\nu_\tau$	4	2	2.2	$0.8 \; \mathrm{GeV} < M_{a_1} < 1.5 \; \mathrm{GeV}$
$a_1^- \nu_\tau \rightarrow \pi^- \pi^+ \pi^- \nu_\tau$	0	0	2.5	$0.8 \; \mathrm{GeV} < M_{a_1} < 1.7 \; \mathrm{GeV}$

Table 4.6: Decay mode identification criteria.

Tau decay mode ID results

decay mode	Correct ID	Wrong ID	ID eff	ID purity	SM bgnd
$e^-\bar{\nu_e}\nu_{ au}$	39602	920	0.991	0.977	1703
$\mu^- \bar{\nu_\mu} \nu_\tau$	39561	439	0.993	0.989	1436
$\pi^- u_{\tau}$	28876	2612	0.933	0.917	516
$ ho^- u_{ au} ightarrow \pi^- \pi^0 u_{ au}$	55931	8094	0.790	0.874	1054
$a_1^- \nu_\tau \rightarrow \pi^- \pi^0 \pi^0 \nu_\tau$	18259	11140	0.732	0.621	847
$a_1^- \nu_\tau \rightarrow \pi^- \pi^+ \pi^- \nu_\tau$	21579	2275	0.914	0.905	141

Table 4.7: Tau decay mode reconstruction for all events.

Summary

 E > 15 GeV: purity efficiency SM events: .97 .97 muons: .85 .95 electrons: ZH events: .983 .985 muons: .984 .896 -> .980 electrons: tau pair evts: .993 .989 muons: electrons: .87 -> .991 .95 -> .977

 Full energy tau pairs: ~75% of events IDed decay mode identification sufficient for a 1% polarization measurement.

Extras

Θ^* = angle between pi and tau in tau rest frame

ω = optimal observable

