Status of the Physics Analyses of the 4th Concept

Corrado Gatto INFN Napoli/Lecce On behalf of the 4th Concept Collaboration

LPCG09 - Corrado Gatto

Post-Tsukuba Software Activities

- SUSY analysis (previously missing)
- Remake of two recoil mass analyses
- Further comparison between DREAM data and ILCroot algorithms

See also the following talk:

- V. Di Benedetto on Friday
- J. Hauptman tomorrow
- A. Mazzacane on Friday

Status of ILCroot

- New central tracker for higher energies studies (temporary module while waiting for Paris VI new proposal)
- New reallignement with latest Aliroot version (v4.17 release)
- Main differences vs Aliroot:
 - 1. Interface to external files in various format (STDHEP, text, etc.)
 - 2. Standalone VTX track fitter
 - 3. Pattern recognition from VTX (for si central trackers)
 - 4. Parametric beam background (# integrated bunch crossing chosen at run time
- Growing number of experiments have adopted it: Alice (LHC), Opera (LNGS), (Meg), CMB (GSI), Panda(GSI), 4th Concept and LHeC

Physics Studies for Lol

- Detector simulation frozen in July 2008 (except Ecal). Simu & Reco started August 2008 (expect some discrepancy with LOI)
- 4th Concept used SiD sample for SUSY and recoil mass studies and ILD sample for the rest
- Not only ILCroot: MarlinKinFit & Rave
- <u>99% computing resources are from Fermilab</u>
- <u>1% computing resources are from INFN</u>
- ILCroot is freely available at Fermilab

http://ilc.fnal.gov/detector/rd/physics/technical/resources/ilcroot.shtml

Processes for LOI

Process	e⁻ polar.	e⁺ polar.	Ecal	Beam bkgnd	MC
$Z^{o}H^{o} \rightarrow \mu^{+} \mu^{-} X$	80%	30%	yes	yes	Fluka
ZºHº → e+ e- X	80%	30%	yes	yes	Fluka
ZºH → 4 jets	100%	100%	no	no	Fluka
$Z^{o}H^{o} \rightarrow v \underline{v} X$	100%	100%	no	no	Fluka
e+e- → t <u>t</u>	100%	100%	no	yes	Fluka
$e^+e^- \rightarrow \chi_1^+\chi_1^- \rightarrow \chi_1^0\chi_1^0 W^+W^-$ $e^+e^- \rightarrow \chi_2^0\chi_2^0 \rightarrow \chi_1^0\chi_1^0 Z^0Z^0$	80%	30%	yes	yes	Fluka
$e^+e^- \rightarrow \tau^+\tau^-$	100%	100%	yes	yes	Fluka

Worst case polarization scenario considered in some cases: largest WW background

$e^+e^- \rightarrow Z^0H^0 \rightarrow \mu^+\mu^- X \sqrt{s}=250 \text{ GeV}$ $e^+e^- \rightarrow Z^0H^0 \rightarrow e^+e^- X \sqrt{s}=250 \text{ GeV}$

- Repeat the recoil analysis with Z -> µ+µ-, e+e-, including the corrected ISR spectrum
- $M_{\mu} = 0$ also corrected (inducing wrong muon bremsstrahlung)
- 80/30 polarization of background by re-waiting method
 The analysis methods are the same as described in the LoI, and we solve the problem for three cases (μ+μ-, e+e- with tracking only, and e+e- with tracking and calorimetry)

ALPCG09 - Corrado Gatto

e⁺e⁻ -> ZºHº -> μ⁺ μ⁻ X √s=250 GeV

Analysis strategy

e⁺e⁻ -> Z^oH^o -> μ⁺ μ⁻ Χ √s=250 GeV

ALPCG09 - Corrado Gatto

Results

 $\Delta M_{Higgs}^{stat} = 936 \ MeV/c^2 \quad \Delta M_{Higgs}^{syst} = 660 \ MeV/c^2$ $\Delta M_{Z^o}^{stat} = 171 \ MeV/c^2 \quad \Delta M_{Z^o}^{syst} = 40 \ MeV/c^2$ $\sigma_{e^+e^- \to Z^oH^o} = 13.62 \pm 0.77 \ fb$ $\varepsilon_{reconstruction} = 64.1\%$

September 30th, 2009

G. Tassielli, G. Terracciano, M. Peccarisi

G. Tassielli, G. Terracciano, M. Peccarisi

e⁺e⁻ -> ZºHº -> e⁺ e⁻ X √s=250 GeV

Results

 $\Delta M_{Higgs}^{stat} = 1050 \text{ MeV}/c^2 \quad \Delta M_{Higgs}^{syst} = 90 \text{ MeV}/c^2$ $\Delta M_{Z^o}^{stat} \approx 400 \text{ MeV}/c^2 \quad \Delta M_{Z^o}^{syst} = 20 \text{ MeV}/c^2$ $\sigma_{e^+e^- \to Z^oH^o} = 15.08 \pm 0.76 \text{ fb}$ $\varepsilon_{reconstruction} = 68.3\%$

Two different analyses using:
1) Only the tracking system
2) Tracking systems + Calorimeter

Need a better integration of the informations from the two systems

September 30th, 2009

6111

0.334

1.482

16.65 / 15

 474.6 ± 9.0

10

GeV/c²

 0.4759 ± 0.0068

 0.4297 ± 0.0066

Summary of Recoil Mass Studies

	expected	meas'd	uncertainty			fitted
Event	cross	cross	on	selection	Figure	Higgs mass
sample	section	section	cross section	efficiency	number	(GeV/c^2)
$Z^0 \rightarrow \mu^+ \mu^-$	11.664 fb	8.952 fb	\pm 0.907 fb	71.8%	Fig. 8	120.28 ± 0.68
$Z^0 \rightarrow e^+ e^-$ tracking only	12.532 fb	13.472 fb	\pm 1.748 fb	67.2%	Fig. 9	120.49 ± 0.85
$Z^0 \rightarrow e^+ e^-$ tracking + calorimeter	12.532 fb	10.884 fb	\pm 1.594 fb	70.9%	Fig. 10	120.15 ± 0.76

Jet reconstrucion: combine calorimetric and tracking informations

(work in progress)

September 30th, 2009

ALPCG09 - Corrado Gatto

A. Mazzacane

A. Mazzacane

°

20 40 60

80 100 120 140 160 180 200

DijetMass (GeV/c²)

e⁺e⁻ -> tṯ ->W⁺bW⁻<u>b</u> ->q<u>q</u>bq<u>qb</u> √s=500 GeV

e⁺e⁻ -> tṯ ->W⁺bW⁻<u>b</u> ->q<u>q</u>bq<u>qb</u> √s=500 GeV

hmsum

M_{top} 21464 Entries Mean 185.3 Results RMS 25.61 χ² / ndf 500 291.061 / 173 10052.7 ± 118.8 nevents $M_{top} = 174.21 \pm 0.06 \ GeV / c^2$ 174.206 ± 0.059 m σ 4.65446 ± 0.05528 400 pol0 -208.198 ± 3.269 $\sigma_{top} = 4.65 \pm 0.06 \ GeV / c^2$ pol1 1.74404 ± 0.03029 signal pol2 0.00195336 ± 0.00019692 300 pol4 -1.97843e-05 ± 7.29270e-07 $\mathcal{E}_{reconstruction} = 16\%$ 200 WW Next step is to complete 100 the flavour tagging analysis 0 120 140 160 180 200 220 240 260 Mass, GeV **Rave Flavour tagging Rave Rejection efficiency** c,light-jet efficiency/b-jet efficiency 104 CC 10³ -iets 10² uds 10 -1 0 2 3 8 0.9 1 5 0.1 0.2 0.6 0.7 0.8 0.3 0.4 0.5 b-jet efficiency log(1+d/o)

$e^+e^- \rightarrow \chi_1^+\chi_1^- \rightarrow \chi_1^o\chi_1^o W^+W^-$

$e^+e^- \rightarrow \chi_2^o\chi_2^o \rightarrow \chi_1^o\chi_1^o Z^oZ^o$

Event reconstruction :

List charged traks from trackers

List of HCAL towers and ECAL cells with E >10 MeV

after calorimeters calibration

Jet pairing :

min |m_{ij}- m_{kl}| To further reduce background:

 $|m_{ii} - m_{kl}| < 5 \text{ GeV/c}^2$

WW/ZZ selection :

Fit on dijet-mass invariant distribution

√s=500 GeV

Event selection :

- Events forced into 4jets (Durham)
- $E_{jet} \ge 5 \text{ GeV}$
- $|\cos \theta_{iet}| < 0.99$
- $N_{total \ lcharged \ tracks \ in \ jet} \ge 2$
- $N_{total charged tracks} \ge 20$
- Y_{cut} > 0.001
- 100 GeV < E_{vis} < 250 GeV
- $|\cos \theta_{\text{miss P}}| < 0.8$
- M_{miss} > 220 GeV/c²
- No lepton with E_{lepton} > 25 GeV

$$\epsilon_{chargino} = 30.3\%$$

 $\epsilon_{neutralino} = 28.6\%$

20

$e^{+}e^{-} \rightarrow \chi_{1}^{+}\chi_{1}^{-} \rightarrow \chi_{1}^{0}\chi_{1}^{0} W^{+}W^{-} \qquad \sqrt{s=500 \text{ GeV}} \\e^{+}e^{-} \rightarrow \chi_{2}^{0}\chi_{2}^{0} \rightarrow \chi_{1}^{0}\chi_{1}^{0} Z^{0}Z^{0}$

A. Maz

Fitted distribution (double gaussian plus 3rd order polynomial)

$$\begin{split} \mathsf{M}_{\mathsf{W}} &= 79.40 \pm 0.06 \; \text{GeV/c}^2 \\ \sigma_{\mathsf{W}} &= 2.84 \; \pm 0.06 \; \text{GeV/c}^2 \\ \mathsf{M}_{\mathsf{Z}} &= 89.55 \pm 0.20 \; \text{GeV/c}^2 \\ \sigma_{\mathsf{Z}} &= 2.77 \pm 0.21 \; \text{GeV/c}^2 \end{split}$$

October 2nd, 2009

A. Mazzacane

$e^+e^- \rightarrow \tau^+\tau^-; \tau \rightarrow \rho v$

√s=500 GeV

- 1. $\tau^+\tau^-$ selection
 - N_{tracks}<6
 - Two narrow jets (calo only)
 - $E_{calo} > 45 \text{ GeV} (\text{suppress } \gamma \gamma -> \tau \tau)$
 - Angle between two jets > 175°
 - Bhabha rejection ($\theta > 15^{\circ}$)
- 2. Hadronic τ decay selection
 - 1. Muon veto (use Muon Spectrometer)
 - 2. Electron veto (combined DCH, ECAL and HCAL)
- 3. $\tau^+ \rightarrow \rho \nu$ selection
 - 1. $\pi \gamma \gamma$ unfolding
 - 2. Cut $M_{\gamma\gamma}$ close to nominal $M_{\pi^{\circ}}$

September 30th, 2009

ALPCG09 - Corrado Gatto

V. Di Benedetto

$e^+e^- \rightarrow \tau^+\tau^-; \tau \rightarrow \rho \nu \quad \sqrt{s=500 \text{ GeV}}$ <u>Results</u>

Only ρ mass at present Analysis is still in progress

September 30th, 2009

V. Di Benedetto

e⁺e⁻ -> Z^oH^o ; and Z^o->c<u>c</u> H^o->b<u>b</u> √s=250 GeV

Analysis strategy

- Select Event with 4 jets (use jet finder with recursive y_{cut})
- 2. $E_{calo} + E_{muon}$ cut to reduce background (events with neutrino or ISR)
- 3. 5-C kinematic fit to all possible jet-jet combinations

1. $\sum \vec{P_i} = 0$ 2. $\sum E_i = 250 \text{ GeV}$ 3. $M_Z = 91 \text{ GeV/c}^2$

- Pick combination with highest probability
- 5. Final cut: χ^2 /ndf<16/5

Signal only No Background

September 30th, 2009

F. Ignatov

e⁺e⁻ -> ZºHº ; Zº->u<u>u</u> Hº->c<u>c</u> √s=250 GeV

Analysis strategy

- Select Event with 4 jets (use jet finder with recursive y_{cut})
- 2. Select M_{j1j3} and M_{j2j4}
- Requires 1 combination within 10 GeV from nominal Z° mass
- 4. Plot the other combination

Signal only No Background

<u>Y. C. Chen</u>

W/Z Mass Separation at 500 GeV

All combination plotted

(6 entries/event)

Choose best pair combination

ALPCG09 - Corrado Gatto

$e^+e^- \rightarrow W^+W^-\nu\overline{\nu}, Z^oZ^o\overline{\nu}\overline{\nu}$

- KEK event sample
- Simple Durham jet-finder a la L3 (recursive y_{cut}) used for this analysis
- No combined information with tracking yet (3 entries/evt)
- No ECAL
- 4-jets finding efficiency: 95%

September 30th, 2009

A. Mazzacane

Event Display in ILCroot

 $e^+e^- \rightarrow H^{o}H^{o}Z^{o}$ -> 4 jets 2muons ECM = 500 GeV

Low pt secondary muon

Conclusions

- Several Physics studies have been performed by the 4th Concept
- Overall performance of 4th Concept detector is excellent
- Software framework (ILCroot) has run flawlessly along the benchmark process (200-1000 CPU on Fermi-GRID almost no-stop since August 2008)
- Update version of ILCroot will be released soon
- Plans are to complete the current studies into a publishable form and then move the simulation activities to support generic detector R&D and physics studies at energies higher than ILC September 30th, 2009

Backup slides

September 30th, 2009

ALPCG09 - Corrado Gatto

Outline

The simulations in the 4th Concept
ILCroot
Detector simulations
Performance & Optimization
Physics benchmarks for the Lol
Future prospects

The Virtual Montecarlo Concept

- Virtual MC provides a virtual interface to Monte Carlo
- It allows to run the same user application with all supported Monte Carlo programs
- The concrete Monte Carlo (Geant3, Geant4, Fluka) is selected and loaded at run time
 - Compare Montecarlo performance and possible flows
 - Choose the optimal Montecarlo for the study

Perfect Tool for Designing/Optimizing new Detectors

4th Concept Software Strategy: ILCroot

- **CERN** architecture (based on Alice's Aliroot)
- Full support provided by Brun, Carminati, Ferrari, et al.
- Uses **ROOT** as infrastructure
 - All ROOT tools are available (I/O, graphics, PROOF, data structure, etc)
 - Extremely large community of users/developers
- TGenerator for events generation
- Virtual Geometry Modeler (VGM) for geometry
- Based on Virtual Montecarlo
- Could it ever evolve into a general purpose entity for the HEP community (as ROOT)?
- Growing number of experiments have adopted it: Alice, Opera, CMB, (Meg), Panda, 4th Concept
- Six MDC have proven robustness, reliability and portability

Do not Reinvent the wheel Concentrate on Detector studies and Physics

32

Improving the Energy Resolution: The Effect of Neutrons

Cer pe vs f Cer pe versus Neutron fractionl జి.2200 ບໍ່ 2000 1800 1600 1400 1200 1000 800 600 400 200 $\mathbf{f}_{\mathbf{n}}$

September 30th, 2009

ALPCG09 - Corrado Gatto

ILCRoot simulation

45 GeV π⁻

ILCRoot simulation

Compensation with ECAL and HCAL

- Get E_{Scint} and E_{Cer} from ECAL (disregard neutrons as Z_{BGO} >> 1)
- Get E_{Scint}, E_{Cer} and E_{neutr} from HCAL
 Then:

$$E_{Total} = \frac{\eta_{S} \cdot (E_{S_{cint}}^{ECAL} + E_{S_{cint}}^{HCAL}) \cdot (\eta_{C} - 1) - \eta_{C} \cdot (E_{Cer}^{ECAL} + E_{Cer}^{HCAL}) \cdot (\eta_{S} - 1)}{\eta_{C} - \eta_{S}} + \eta_{n} \cdot E_{neutrons}^{HCAL}$$

 Estimate η_C, η_S and η_{neu} from a 45 GeV run (π⁻ and e⁻) by minimizing the spread of E_{tot}

September 30th, 2009

ALPCG09 - Corrado Gatto

Particle

45 GeV particles

Calorimeter Response for 45 GeV e

core

80 GeV jet with escaping particles

ILCRoot simulation

September 30th, 2009

$\mu^+ \mu^-$ at 3.5 GeV/c

$e^+e^- \rightarrow Z^0H^0 \rightarrow vv cc + ZZ Background$

September 30th, 2009

ALPCG09 - Corrado Gatto