

Beam backgrounds: Simulation & Effects on Reconstruction at ILD

- Introduction to beam induced backgrounds
- Simulation of beam background
 - Isotropic background
 - Overlaying real simulated background
- ◆ Background in TPC and VTX
- *Physics analyses with beam background

Beam Induced Backgrounds

novel problem faced by linear colliders - beam induced backgrounds

- machine induced backgrounds -> most important source of unwanted interactions
 - beamstrahlung (photons) & e⁺e⁻ pair production
 - photons strongly focused in forward direction,
 exit through beam tube
 - e⁺e⁻ pair production: direct and scattered
 particles in the detector
 - 10⁵ pairs per bunch crossing, total energy
 ~100TeV, average few GeV per particle

- electron-positron pairs are unavoidable backgrounds
- other beam beackgrounds (of small impact, not yet included in studies):
 - beam halo muons, beam gas interaction, synchrotron radiation from beam delivery, particle losses in extraction line, beam dumps

Beam Backgrounds in Detector

- Guinea Pig generation of e⁺e⁻ pairs
- full GEANT-4 simulation of pairs background
 - includes realistic description of forward region and magnetic fields
 - main gaseous tracker conversion of backscattering photons
 - tracks from the IP, rare, but mostly curlers
 - recoil tracks from neutron-proton
- mostly affected VTX and forward detectors
 - VTX will integrate a large number of bunch crossings for every physics event
- necessary to find a way to simulate background
 - salt & pepper BG in VTX
 - overlayed background

Mokka hits in the TPC (100BX)

Salt & Pepper Background

- salt&pepper hits added to VTX (VTXNoiseHits Marlin Processor)
 - isotropically distributed hits added to SimTrackerHits collection after digitizing
 - hits added according to hit densities
 - layers 1-2: 83 BX/event, rest 333 BX/event (estimated from VXD readout times)
- fully reconstructed tracks after chain:
 - digitalization
 - silicon tracking
 - LEP tracking
 - full tracking

- hit densities calculated from number of hits in detector layers for 1 BX
 - average number of VTX hits calculated from Guinea Pig files simulated with Mokka

(SimTrackerHit), ~100 BX used

Background: Hits & Tracks

- ·huge amount of additional background hits in VTX
- huge amount of additional tracks in VTX and whole detector
- problems in reconstruction

- •ghost tracks from 'noise' hits
- hits might degrade the measurement of physics hits that are nearby (cluster extension)
- •is tracking reliable?

with bg hits

	no background	background
VTX hits	~400	~10 ⁵
Si tracks	~60	~4000
Full tracks	~70	~1500

בו

ス

5

at ILC

Background & Full Tracking

background (only in VTX)

no background

- tracking not really reliable
- can Pandora deal with that?

Background: PFOs

- •Pandora does not crash!
- number of PFOs higher
- *total energy slightly higher (more PFOs) but in reasonable range
- •Pandora (sort of) works but reconstructs too many PFOs
 - uses other variables & detectors
 - selection on tracks

Reducing Background after Reconstruction

- cuts to reduce background and keep physics events?
- best results with 2D cuts based on track DO, track pseudorapidity and number of hits used for track fit coming from TPC (background tracks rarely reach TPC)

More Realistic Background

- is isotropic background from Salt&Pepper processor realistic enough?
 - not all distributions flat
 - lack of real tracks
 - background hits only in VTX
- •more realistic S&P:
 - parametrize isotropic background according to real distributions
 - add background in other detectors
- best approach overlay simulated
 background on physics events —

physics processes overlayed with hits from simulated Guinea Pig eterpairs

Overlay Processor

- OverlayBX processor, version v01-06-fw:
 - possibility to overlay n BX in TPC
 - 1 BX in other detectors with fast readout: SIT, FTD, SET, ECAL, HCAL, BCAL, LCAL, LHACAL
 - in VTX number of overlayed BX evaluated from readout times, 83 for 1-2 layers and 333 for the rest
 - uses ~2000 Ginea Pig BX
 - ILD_00fw model created to study background

- technically challenging
 - time consuming
 - different components different readout times different number of BX
 - need to account for time- and space-shifts for different BX
 - large pool of GP events necessary: 2000 BX (thanks to T. Hartin)

Beam Background in TPC

- background hits in TPC \rightarrow
- ttbar events overlayed with hits from e⁺e⁻ pairs
 - 150 BX overlayed
 - improved digitalization
- specific pattern recognition software
 - · micro-curlers removed:
 - 99% background hits removed
 - 3% signal hits removed, only 1% hits from tracks p_{τ} > 1 GeV
- remaining hits no problem for track-finding pattern recognition software

TPC hits for ttbar events overlayed with 150 BX of pair-background hits

improved reconstruction "killing" micro-curlers

courtesy of S. Aplin

Beam background in VTX

- •GineaPig simulation of background analyzed (R. de Masi)
 - distribution of cluster sizes calculated
 - clusters: ellipses or rectangles on VTX ladder surfaces
 - two main cluster axes on the ladder
 - root-histograms provided
- •cluster sizes are strongly peaked at 3x3 pixels with long tails

- 2 Marlin processors adding
 ClusterParameters to VTX hits
- VTXNoiseClusters
 - distribution of cluster sizes from root-histograms
- VTXBgClusters
 - projected path length of MCParticle when going through sensitive part of VTX ladder
 - oriented along projection of particle's 3-momentum
 - needs 'dedicated' configuration parameter in Mokka simulation (not mass production)

Beam Background in VTX

- effect of measurement degradation from clusters studied
 - hit position of a physics hit (space point) falls within a background cluster hit:
 - physics hit removed (optionally background hit moved to the intermediate position)
 - resolution kept
- effectively removes ~0.1-3.3%
 (occupancy) of the physics hits
 (different for different layers)

- Marlin processor to "simulate"lower occupancy
 - removes on statistical basis random hits from physics hits in VTX layers, according to numbers from degradation studies
 - quick uses only physics sample
 - tests ran so far
- another processor (not used yet)
 - uses simulated GP background to remove hits
 - time & resources consuming

Tagging Bunch Crossings

- pattern recognition in presence of background challenging
 - seeding for Si tracks changed
- number of background ghost tracks
 dramatically decreased if BX tag used
 - at least 1 SiT hit OR
 - at least 10 TPC hits
- •much less tracks and higher p_{τ}
- •leftover tracks
 - relatively high $p_{T} e^{+}/e^{-}$
 - combination of physics and BG hits
- •loss of efficiency due to requirements
 - 1% for p_{τ} < 1 GeV, none for p_{τ} > 1 GeV

15

Tracking Efficiency

- *effect of overlayed background and VTX hit inefficiencies studied for $t \ \overline{t} \rightarrow 6 \ jets$ events (for CME 500 GeV)
 - track efficiencies for p_{τ} < 300 MeV reduced
 - for p_{τ} < 1 GV inefficiency less then 0.1%
 - track efficiency 98.8%
 - for tracks that deposit energy in TPC and with $p_{\scriptscriptstyle T}$ < 1 GV efficiency is > 99.9%
- *track efficiencies not significantly degraded in by nominal level of BG

Impact on Physics Analyses

- •IDAG requested studies for Higgs recoil mass with beam BG
- track finding inefficiencies for high momentum muons from $ZH \rightarrow \mu^+\mu^- X$ negligible
- •low p_⊤ tracks do not affect recoil mass distribution
- effect from loss of hits in VTX due to occupancy negligible
- •full simulation of background time&CPU consuming
 - 150 BX in TPC
 - 1 BX in SiT
 - 83/333 BX in VTX

overlayed for each physics event!

16

SUSY Spsla': Stau Mass

$$e^+e^- \rightarrow \tilde{\tau}\,\tilde{\tau} \rightarrow \tilde{\chi}_1^0 \tau\,\tilde{\chi}_1^0 \tau$$

- missing energy and 2 low multiplicity tau-jets
- τ mass extracted from endpoint of tau-jet energy spectrum (assuming $\tilde{\chi}_{_{1}}^{0}$ mass)

- requirements:
 - precision tracking
 - · good particle identification
 - hermetic detector
 - · low machine background
- stat. error on end-point: 0.1 GeV
- accounting for $\tilde{\chi}_1^0$ mass uncertainty: 0.1 GeV \oplus 1.3 σ_{LPS}

ALCPG09

SUSY Sps1a': Staus Revisited

$$e^+e^- \rightarrow \tilde{\tau} \tilde{\tau} \rightarrow \tilde{\chi}_1^0 \tau \tilde{\chi}_1^0 \tau$$

- studied with beam background present
 - each physics event overlayed with set of cuts to remove background

1 BX of Guined Pig pairs charged particle log10(E)

- particle energy E > 0.5 GeV
- at least 1 hit in TPC (charged and neutral)
- DELPHI jet algorithm used to find taus (more efficient than Durham)

no difference in τ mass extracted with beam background and without

for details check M. Berggren talk

courtesy of M. Berggren

Summary

- ILC faces novel problem of beam-related backgrounds
- we have to know its impact on reconstruction and physics analyses
 - we can simulate it
 - · we are learning how to deal with it
 - · we start to do analyses with real background simulation

Magnetic Field in Mokka

- B-Field problems found in the ILD_00fw model created to study background
 - strange radial components in the B-Field in the TPC

- new model created ILD_00fwp01
 - new non-uniform solenoid with anti-DID
 - GP files for background studies created with proper B-field

