

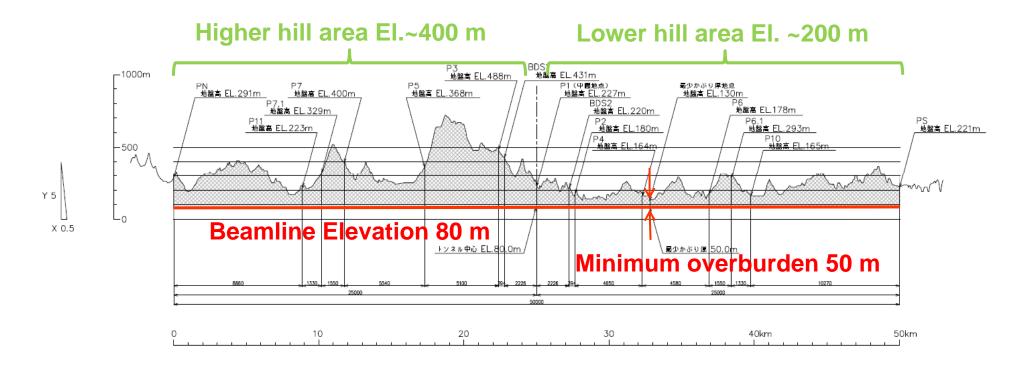
Asian Tunnel Configuration

Atsushi Enomoto

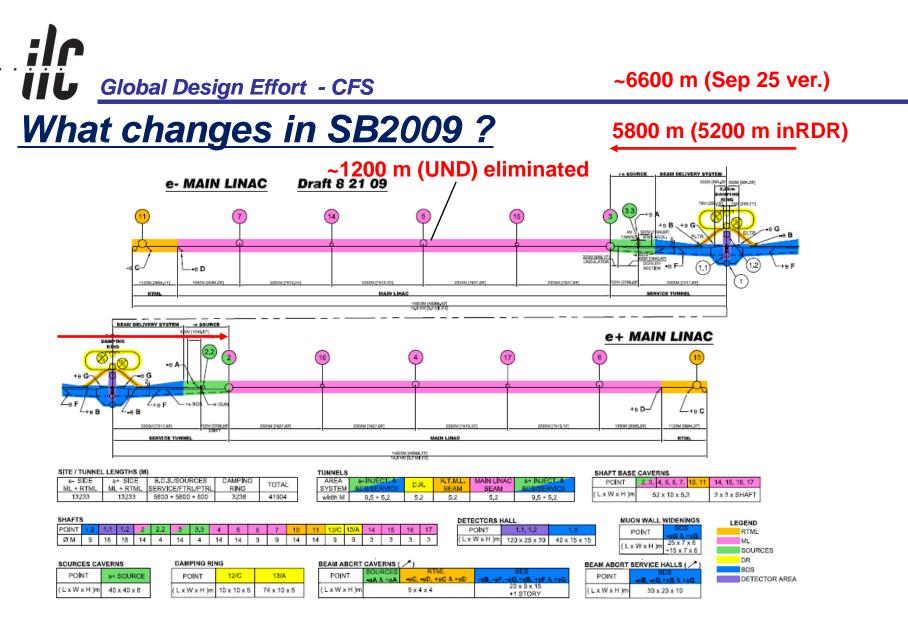
KEK

ALCPG09, Albuquerque, 29 Sep. - 3 Oct. 2009

Contents of this talk

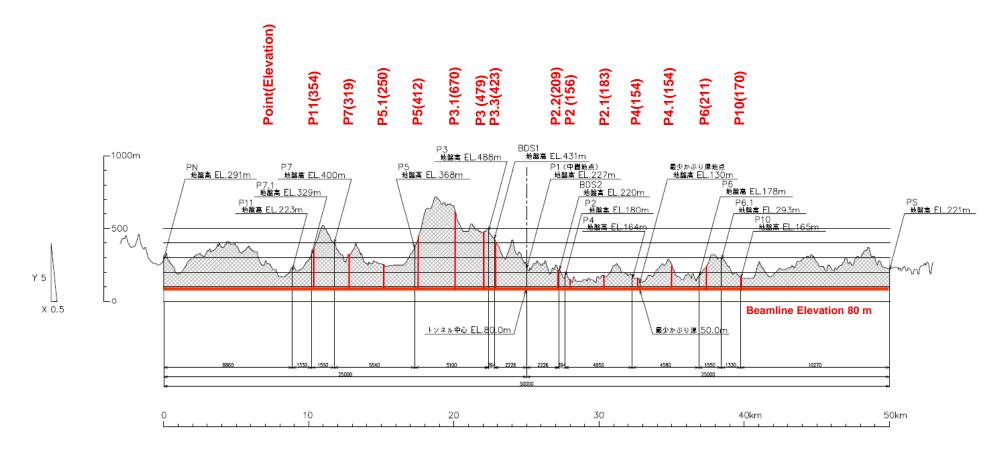

- Specific feature of Asian Sample Site
- Ways of access from ground to underground
- Sections of caverns
- KCS and DRFS configurations

Specific feature of Asian Sample Site



Elevation

Ways of access from ground to underground



Our presentation at Albuquerque based on SB2009 CFS Key Plan 8 21 Version

ALCPG09, Albuquerque, 29 Sep. - 3 Oct. 2009

Access Points (SB2009)

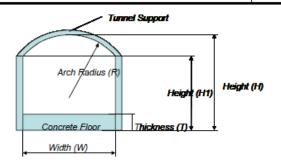
What we did up to this meeting

Possibilities of reducing distance from surface to underground tunnel ----- though it may cost higher

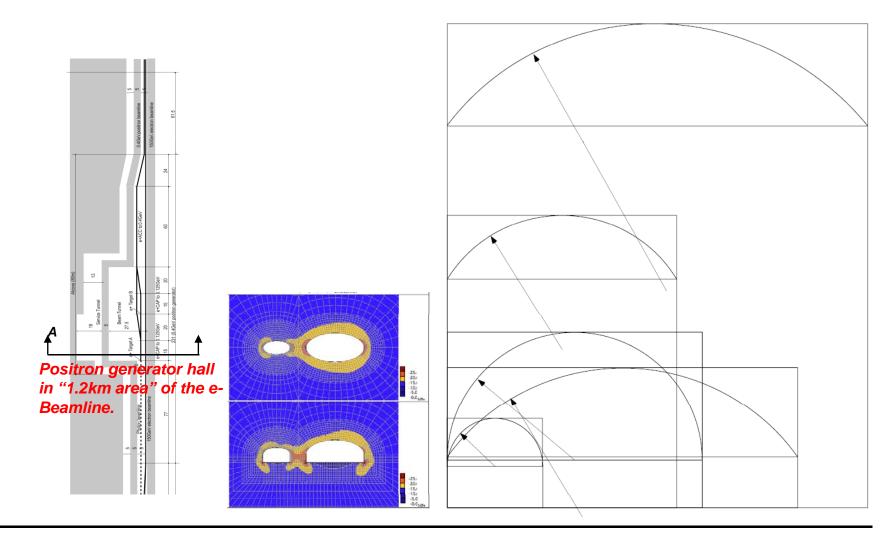
Case	Access way	Schematic Layout
RDR	Sloped Tunnel	Existing Road Access Tunnel (sloped less than 10%)
Case B	Shaft	Extra Road needed to be developed Shafts Existing Road
Case C	Shaft + Horizontal Tunnel (surface hall)	Existing Road Shafts
Case D	Shaft + Horizontal Tunnel (underground hall)	Existing Road Shafts
		Beam Tunnel 🔲 RF Cluster

ALCPG09, Albuquerque, 29 Sep. – 3 Oct. 2009

Access Po	oint Data in	Asain Sample	e Site									
Point ID	Elevation (m)	L (km)	dL (km)	Tunnel EL (m)	Entrance	Type	Elevetion (m)	Hor.Distance (m)	Depth (m)	Slope (%)	Cost	Remarks
				80		Shaft	354	0	274	-		
P11	354	14.703	2.573			Shaft+Tunnel	350	350	270	-		
			1			Sloped Tunnel	210	1570	130	8.3		
		12,130	2.290	80		Shaft	319	0	239	-		
27	319					Shaft+Tunnel	240	440	160	-		west side
- /	515	12.100				Shaft+Tunnel	320	345	240	-		east side
						Sloped Tunnel	215	1350		10.0		
		9.840	2.290	80		Shaft	250	0	170	-		
P14	250					Shaft+Tunnel	225	700		-		west side
2	200					Shaft+Tunnel	250	195	170	-		east side
						Sloped Tunnel	205	1420	125	8.8		
P5 4		7.550	2.325	80		Shaft	412	0	332	-		
	412				1	Shaft+Tunnel	290	700	210	-		east side
	412					Shaft+Tunnel	410	505	330	_		west side
						Sloped Tunnel	230	1580	150	9.5		
						Shaft	670	0	590	-		
P15	670	5.225	2.325	80		Shaft+Tunnel	570		490	-		west side
10	0/0	0.220	2.320	00		Charles Transl	400	1000	200			weat alda


We have figured out some sloped tunnels can/should be replaced by shafts/(shafts+ horizontal tunnel) taking account of not only access length but also the construction costs.

D10	100	E 00E	0.005	0.0		0.0.7		150			
P16	183	-5.225	2.325	80		Shaft+Tunnel	155	150	75	_	 west side
						Sloped Tunnel	145	870	65	7.5	
				80		Shaft	154	0	74	_	
P4	154	-7.550	2.325			Shaft+Tunnel	160	265	80	_	west side
F4	104	-7.550	2.320	80		Shaft+Tunnel	125	295	45	-	east side
						Sloped Tunnel	125	450	45	10.0	
						Shaft	154	0	74	-	
P17	154	-9.840	2.290	80		Shaft+Tunnel	220	360	140	-	west side
						Sloped Tunnel	150	1060	70	6.6	
						Shaft	210	0	130	_	
P6	210.5	-12.130	2.290	80		Shaft+Tunnel	200	140	120	-	west side
						Sloped Tunnel	155	860	75	8.7	
						Shaft	170	0	90	_	
P10	170	-14.703	2.573	80		Shaft+Tunnel	150	235	70	-	west side
						Sloped Tunnel	145	790	65	8.2	
						Shaft	252	0	172	-	
P12C	252			80		Shaft+Tunnel	250	90	170	-	west side
						Sloped Tunnel	210	1470	130	8.8	
						Shaft	268	0	188	-	
P13A	268			80		Shaft+Tunnel	260		180	-	west side
						Sloped Tunnel	230	1950	150	7.7	
P1	230			80		Shaft	230	0	150	_	
P1.1	220			80		Shaft	220	0	140	_	
P1.2	235			80		Shaft	235	0	155	-	



Sections of caverns

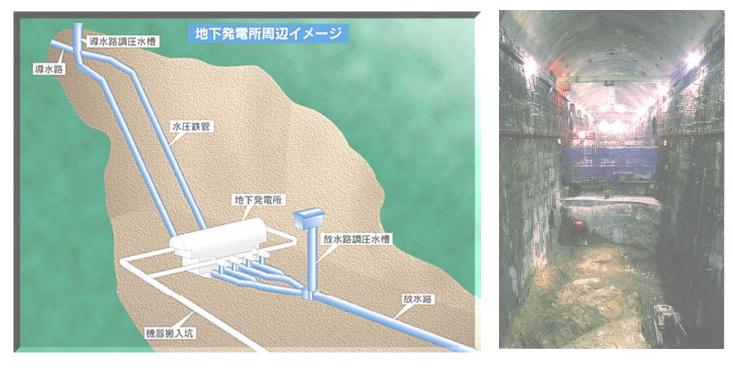
16m diameter	16m diameter shaft, "step-by step" Double-lining of 1.1m thick		
14m diameter	14m diameter shaft, "step-by step" Double-lining of 1.1m thick		
9m diameter	9m diameter shaft, "step-by step" Double-lining of 1.1m thick		
4m diameter (place holder)	4m diameter shaft, "step-by step" Double-lining of 1.1m thick		
3m diameter (place holder)	3m diameter shaft, "raise borer"		
1.50m diameter	1.5m diameter shaft, "raise borer" Steel pipe.		
Access (Sloped) Tunnel by NATM (Blast & Drill)	Horseshoe W(m) X H(m), R(m), T(m)	A(m2)	
Soil deep to ~5m, D-class rock down to ^20m	W(7.5)H(6.5)R(3.75)T(0.5x5m,0.695x2.5m) (near surface -200m-)	42.7	
8-class hard rock deeper than ~20m	W(7.5)H(6.5)R(3.75)T(0.5x5m,0.695x2.5m) (hard rock)	42.7	
Soil deep to ~5m, D-class rock down to ^20m	Horseshoe shape tunnel of 3.5m wide, 3.5m high (near surface - 200m) 10.936 	
B-class hard rock deeper than ~20m	Horseshoe shape tunnel of 3.5m wide, 3.5m high (hard rock)		
eam/Service Tunnel & Alcove by NATM	Horseshoe W(m) X H(m), R(m), T(m)	A(m2)	
1.5m Beam/Service Tunnel	W(4.5)H(4.5)R(2.25)T(1.145)	18.1	
BM start point	W(7.5)H7)R(3.75)T(1.895)	46.5	
3DS IR2 (Chunk at tunnel branch)	W(4.5)H(4.5)R(2.25)T(1.895) expded from 4.5mb TBM	18.1	
3DS IR2	W(7.5)H(5)R(4.06)T(1.895)	32.3	
iGeV Injector Beam Tunnel	W(7.5)H(5)R(4.06)T(1.145)	32.3	Unit
GeV Injector Beam/Service Tunnel	W(19)H(9.25)R(12.74)T(1.145)	150.9	UIII
GeV Injector Beam/Service Tunnel	W(16.2)H(9)R(10.2)T(1.145)	126.2	
ND beam tunnel alcove	W(27.5)H(11)R(17)T(1.145)	244.7	COS
IND beam tunnel alcove	W(10)H(6.5)R(6.25)T(1.145)	57.5	
IND beam tunnel alcove	W(7.5)H(6.5)R(4.06)T(1.145)	43.5	
KAS beam cavern	W(28.75)H(11)R(18.26)T(1.895)	255.3	
KAS beam cavern	W(11.25)H(8.875)R(5.625)T(1.895)	86.3	
Laser Room	W(12.4)H(8)R(7.91)T(1.145)	87.9	
IND bservice tunnel alcove	W(16)H(8)R(10)T(1.145)	108.7	
ND bservice tunnel alcove	W(5)H(5)R(2,5)T(1,145) expded from 5mé TBM	22.3	
(AS service tunnel	W(5)H(8.5)R(2.5)T(1.895)	29.8	
(AS service tunnel	W(15)H(7.5)R(9.79)T(1.145)	96.5	
(AS service tunnel	W(12)H(7)R(7.5)T(1.895)	73.2	
(AS service tunnel	W(12.5)H(7)R(8.01)T(1.895)	76.1	
Beam Dump Hall	W(20)H(10)R(12.5)T(1.895)	169.9	
unnel by TBM			
.5m Beam/Service Tunnel (short)	D=4.5m, TBM (short run), 1.145m high concrete floor	15.9	
I.5m Beam/Service Tunnel (long)	D=4.5m, TBM (long run), 1.145m high concrete floor	15.9	
im Beam Tunnel (long)	D=5m, TBM	19.6	
lousing			

Tunnel Cross Section assumed in RDR

ALCPG09, Albuquerque, 29 Sep. - 3 Oct. 2009

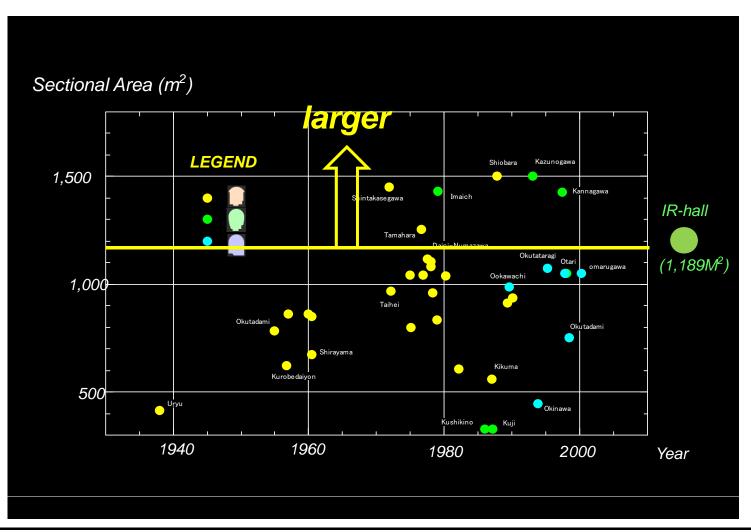
Granite (compressive strength~100MPa)

- Underground structure without concrete lining.
- Basically finished with "Shotcrete" (sprayed concrete).
- Drainage boring and Grouting as supplementary work.


An example of underground facilities constructed in granite geology: Tenryugawa-Sakuma underground dam plant without lining worked more than 50 years without any troubles.

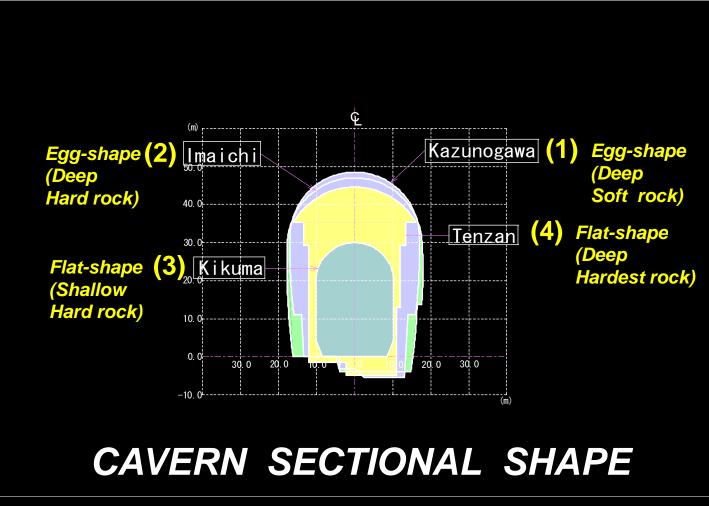
Construction Experiences in Japan

 By S.Shikama (Kumagaigumi Co.Ltd. JAPAN) at Asian KOM, Sep. 2007 (following 5 slides).

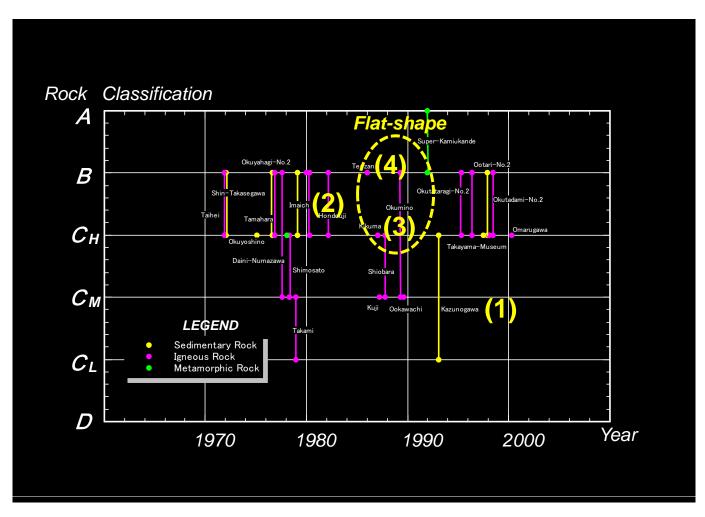


POWER STATION (CAVERN TYPE)

ALCPG09, Albuquerque, 29 Sep. – 3 Oct. 2009

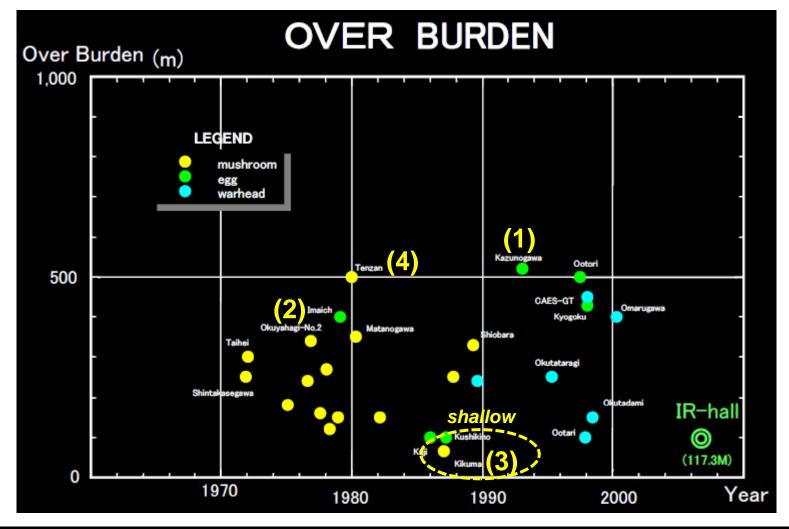

<u>ilr</u> Global Design Effort - CFS

ΪĻ



:lr

IIL


<u>ilr</u>

....ir **Global Design Effort - CFS**

ΪĿ

Tunnel Cross Section assumed in RDR

ALCPG09, Albuquerque, 29 Sep. - 3 Oct. 2009

KCS and DRFS configurations

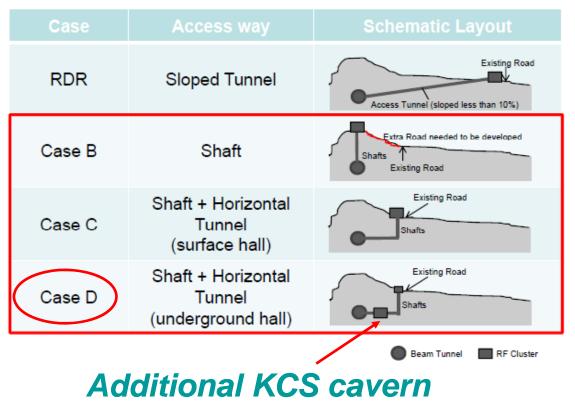
Work Assumption (proposal to avoid confusion)

Machine designs should be one for each

- Many designs need more studies and R&Ds

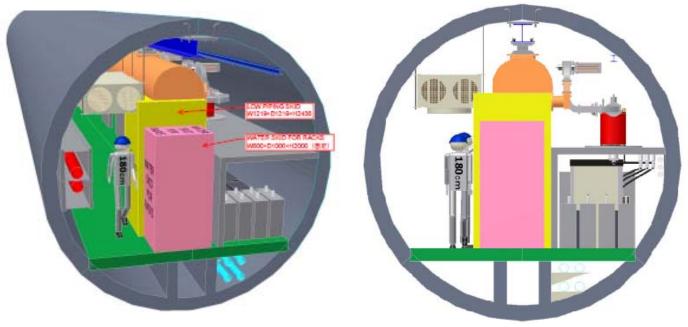
CFS designs should be arranged to match the machine designs even if it raise the CFS cost

- For KCS jn Asian site we consider additional underground caverns
- For DRFS in CERN site how much is an extra cost to reinforce the ceiling


Safety solutions will be regional

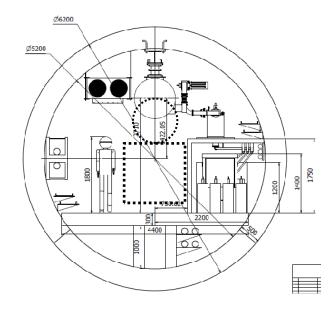
- Solution of additional tunnel for safety under consideration in Asian team should be treated as an alternative at present.

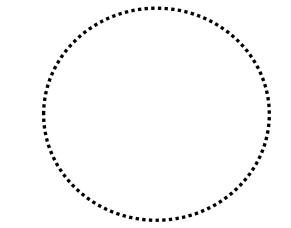
Work Assumption for KCS (Asia)


Possibilities of reducing distance from surface to underground tunnel ----- though it may cost higher

Work Assumption for DRFS (Asia)

Tunnel Inner Diameter 4.5 m




Space seems poor for Air conditioning / cooling water / He emergency system. Need more diameter and alcoves for CFS equipment evry 4th RF unit.

Work Assumption for DRFS (Asia)

Tunnel Inner Diameter 5.2 m

Space seems better

Alternative solution for safety (not included in SB2009 cost)

Summary

Summary of this talk

- Based on SB2009 CFS key plan, ways of access to the underground tunnel were studied.
- Some of the sloped tunnel can/should be replaced by shaft/ shaft+h. tunnel.
- Cavern section issue in Asian site was reviewed.
- A work assumption was proposed to avoid confusion about KCS and DRFS.
- As SB2009 ML single tunnel size, 5.2 m is chosen to develop civil design and cost.