



## Latest Results on Cavity Gradient Stability at FLASH/TTF

Shilun Pei and Chris Adolphsen In Collaboration with DESY, ANL and FNAL

SLAC National Accelerator Laboratory 2009 Linear Collider Workshop of America Albuquerque, New Mexico September 29 – October 3, 2009

# **Topics**

- FLASH Facility Overview
- Motivation
- Experimental Results
- Analytical Model Simulations
- Summary

## **FLASH Facility Overview**



- World's only FEL for VUV and soft X-ray production.
- RF gun produces e- bunches accelerated by SC Linac.
- 1nC bunch compressed at intermediate energies ( $ps \rightarrow fs$ )
- Peak current increases from 50-80 A to 1-2 kA.
- 6 modules containing 8/1.3GHz/1m/9-cell SC cavities.
- ACC4/5/6 is powered by a single klystron and controlled by one LLRF system, similar to an ILC RF unit, and is the focus of this study.

## Motivation

- Measure the input and cavity rf stability (affected by Lorentz force detuning and microphonic induced cavity frequency changes). Data taken with the FB and AFF off are relevant.
- Data was collected on 09/18/08 and 01/14/09. In September, three sets of data (FB off + AFF off; FB on + AFF off; FB on + AFF on) without piezo compensation were taken. In January, only FB off + AFF off data was taken (First run with piezo actuator on in module ACC6).
- Only beam off data was recorded.

#### **Typical RF Forward Signal with Beam Off** First flat top Second flat top mean of cavity forward amplitude, 25 CAV1 CAV2 20 CAV3 CAV4 CAV5 mean (MV/m) 15 CAV6 CAV7 CAV8 10 5 0 500 1000 1500 2000 time (µs)



## **1st Forward Flat Top Statistics**

(Measurement Noise Error Subtracted)



Blue: Nominal + 100Hz Initial Detuning; Red: Nominal Initial Detuning; Green: Nominal – 100Hz Initial Detuning.

# 2<sup>nd</sup> Forward Flat Top Statistics

(Measurement Noise Error Subtracted)



Blue: Nominal + 100Hz Initial Detuning; Red: Nominal Initial Detuning; Green: Nominal – 100Hz Initial Detuning.

## **Probe Flat Top Statistics**

(Measurement Noise Error Included)





### **Corr. of Probe Ampl. and Detuning Jitter**

• Strong correlation between jitter in probe flat top amplitude and detuning jitter at the end of the pulse.



## **Probe Flat Top Statistics**

(Measurement Noise Error Included)



Blue: Nominal + 100Hz Initial Detuning; Red: Nominal Initial Detuning; Green: Nominal – 100Hz Initial Detuning.

## **Analytical Model**

Base band component of cavity voltage

$$\begin{aligned} \frac{d}{dt} \begin{bmatrix} V_r \\ V_i \end{bmatrix} &= \begin{bmatrix} -\omega_{1/2} & -\Delta\omega \\ \Delta\omega & -\omega_{1/2} \end{bmatrix} \begin{bmatrix} V_r \\ V_i \end{bmatrix} + R_L \omega_{1/2} \begin{bmatrix} I_r \\ I_i \end{bmatrix} \\ \omega_{1/2} &= \frac{\omega_0}{2Q_L}, \quad \Delta\omega = \omega_0 - \omega \end{aligned}$$

Detuning component driven by Lorentz force

$$\frac{d}{dt} \begin{bmatrix} \Delta \omega_m \\ \Delta \dot{\omega}_m \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -(2\pi f_m)^2 & \frac{-2\pi f_m}{Q_m} \end{bmatrix} \begin{bmatrix} \Delta \omega_m \\ \Delta \dot{\omega}_m \end{bmatrix} + 2\pi V^2 \begin{bmatrix} 0 \\ -K_m (2\pi f_m)^2 \end{bmatrix}$$
$$\Delta \omega = \Delta \omega_0 + \Delta \omega_0' (t) + \sum_{m=1}^N \Delta \omega_m$$

| Mechanical parameters | Resonance frequency vector            | [280,340,420] | Hz          |
|-----------------------|---------------------------------------|---------------|-------------|
|                       | Quality factor vector                 | [100,100,100] |             |
|                       | Lorenz force detuning constant vector | [0.4,0.3,0.2] | $Hz/(MV)^2$ |

Measured forward current signals were used as the rf drive signals.

#### **Jitter vs Gradient for Diff. Pre-detuning** (3Hz Gaussian Initial Detuning Jitter Assumed)



### **Jitter vs Pre-detuning for Diff. Gradient** (3Hz Gaussian Initial Detuning Jitter Assumed)



#### **Comp. Between Exper. and Simul.**



#### **Reflected Ratio for Piezo On/Off**



Piezo Off with Nominal Initial Detuning



Piezo On with Nominal Initial Detuning



## Summary

- FB/AFF off amplitude very stable pulse to pulse.
- Jitter at end of probe flattop correlates well with detuning jitter just after rf shut-off, suggesting that variations in pulse-to-pulse detuning jitter is driving the probe signal jitter.
- Analytical simulation matches well with the experiment, which indicates the cavity gradient jitter is dominated by two factors: cavity initial detuning and detuning jitter.
- The is one optimum initial detuning with minimum gradient jitter for each cavity at one specific gradient.
- Piezo works well to reduce reflection ratio but adds some additional jitter to the probe signals.