

FLASH 9mA Experiment

J. Carwardine, N. Walker, S. Schreiber For the FLASH 9mA collaboration

ilc

Outline

- Goals
- Achievements
- Planning
- Highlights
- Operations items
- Data examples
- Thinking ahead...

String Test: goals from R&D Plan

Integration Tests

- The highest priority goal is to demonstrate beam phase and energy stability at nominal current
- Important because of their potential cost impact:
 - demonstrate operation of a nominal section or RF-unit
 - determine the required power overhead
 - to measure dark current and x-ray emission
 - and to check for heating from higher order modes
- Needed to understand linac subsystem performance:
 - develop RF fault recognition and recovery procedures
 - evaluate cavity quench rates and coupler breakdowns
 - test component reliability
 - tunnel mock up to explore installation, maintenance, and repair

TTF/FLASH 9mA Experiment

Full beam-loading long pulse operation → "S2"

		XFEL	ILC	FLASH design	9mA studies
Bunch charge	nC	1	3.2	1	3
# bunches		3250	2625	7200*	2400
Pulse length	μS	650	970	800	800
Current	mA	5	9	9	9

Prior achievements and goals set for the Sept 09 studies (ambitious!)

	Achieved in Sept 08	Goal for Sept 09	
Bunch charge to dump	2.5nC @ 1MHz	3nC @ 3MHz	
Bunches/pulse	550 @ 1MHz	2400 @ 3MHz	
Beam pulse length	550uS	800uS	
Beam power	6kW (550x3nC/200mS @ 890MeV)	36kW (2400x3nC/200mS @ 1GeV)	
Gradient in ACC4-6	Ensemble avg: ~19MV/m	Ensemble avg: to ~27MV/m Single cavities: to ~32MV/m	

Plus, ambitious series of other studies:

- RF overhead studies: cavity data, operation with reduced klystron voltage
- Gradient studies: operating close to quench
- Power distribution studies: Loaded-Q,...
- Make time available for other studies with the high power beam (eg RTML)

TTF/FLASH 9mA Experiment

Full beam-loading long pulse operation → "S2"

		XFEL	ILC	FLASH design	9mA studies
Bunch charge	nC	1	3.2	1	3
# bunches		3250	2625	7200*	2400
Pulse length	μS	650	970	800	800
Current	mA	5	9	9	9

- Stable 800 bunches, 3 nC at 1MHz (800 μs pulse) for over 15 hours (uninterrupted)
- Several hours ~1600 bunches,
 ~2.5 nC at 3MHz (530 μs pulse)
- >2200 bunches @ 3nC (3MHz) for short periods

9mA Example Results

Much experience gained running with high beam-loading conditions

Approx. 15 TBytes of data to be analysed (beginning)

Along pulse: 0.1% RMS (0.5% pk-to-pk)

(after initial transient)

Pulse-to-pulse (5Hz): 0.13% RMS

Integrated Systems Test

- Understanding trip and trip recovery (beam loss)
- RF parameter tuning
- RF system calibration
 Extrapolation to XFEL/ILC

9mA Experiment Status

- Successfully completed 2-week dedicated experiment
 - Total 5-week interruption to FLASH photon user programme when shutdown for dump-repair is included (thanks to DESY)
- Commissioning of new hardware
 - 3MHz laser
 - Simcon-DSP LLRF system(s)
 - New instrumentation in dump line
- Detailed data analysis now just beginning
 - Will take some months of analysis
- Stable operation with high beam-loading (high beam-powers) demonstrated, but
 - Not all (original) 9mA goals were achieved
 - Routine operation of long bunch trains still requires work
 - Planning for next shifts (proposal) now underway

Preparation and planning

ilr

Preparatory work

- Repair the dump, add new diagnostics to detect beam loss
- LLRF system upgrades at ACC456
 - Upgrade hardware to latest generation (SimconDSP)
 - Algorithm improvements: beam loading compensation, feed-forward waveform generation, ...
- Optics work
 - Improve alignment between model and measured lattice
 - Improve understanding of loss points and apertures
 - Refine the bypass lattice
- Prepare gun and laser for operation with 3MHz bunch rate
- Studies planning!

Time-line for 5-week studies period

- Weeks 34-35: Shutdown
 - Install new dump line + diagnostics
 - Commission new RF system at ACC456
 - LLRF/RF tests during Week 35 (overnight)
- Week 36: Machine start-up (earlier than planned)
- Weeks 37-38: Beam Studies

New dump-line + diagnostics

2nd order dispersion (Elegant simulation)

compoid outsur, input: FlaviBypeasure tetrice. FleahBypeasure

- Modeling bypass and dump only input bunch has 3D Gaussian distribution and design parameters; no physical aperture was taken into account
- Start to end (S2E) simulation
 physical aperture of bypass and
 dump are included;
 Astra was used to simulate RF
 gun and ACC1, so that more
 realistic bunch parameters are
 used
- In both case, only theoretical optics; up to 3rd order map are used

Highlights pictures

History of bunch charge and number of bunches during Week #2....

Rapid re-start after tunnel access

(0-800 bunches in 40 minutes).

A curious problem...

(nothing between 700 and 800 bunches)

Last shift... almost 2400 bunches

Operationally, it was hard!

Slow start ...

- Sept 3rd: beam to dump (3nC, 30 bunches)
- Sept 13: first time with more than 30 bunches
- In Sept '08, we had long bunch trains within 24hrs
- So what was different...?
- 'Typical' operations problems coming out of a shutdown
- New LLRF system to debug at ACC456: hardware, firmware, doocs server, et al
- Then... we couldn't get the beam through the machine with sufficiently low loss (not entirely clear why)

Beam loss

- Spent a lot of time fighting losses, mainly in three areas
 - Bunch compressor BC3
 - First dipole of bypass line
 - Beam dump line
- Losses speak to energy stability, orbit stability, energy / physical aperture, optics, dispersion,...

Beam losses

- Identified three contributors to the measured losses
 - Bunch trains (1)
 - Dark current from the rf gun
 - Phantom bunches from leakage in laser switch (2)

Machine tuning and MPS

- MPS allows two operating modes:
 - Short-pulse mode (up to 30 bunches)
 - Beam loss monitors and Toroid Protection System are inactive
 - Get the full bunch-train even if losses are high
 - Long-pulse mode(>30 bunches)
 - Beam loss monitors and TPS are are active
 - Single-bunch loss, 30-bunch avg, integrated loss
 - Bunch-train terminated when any threshold is reached
- Short-pulse mode is very effective for tuning
 - Correct orbit, energy, beam-loading comp. etc without tripping
 - 'Sample' the full flat-top using 30 bunches at 40kHz
- There is no 'tuning' mode for long bunch trains
 - Especially difficult for beam loading compensation tuning
 - Thermal effects due to frequently terminated bunch trains

Some other issues

- Three different measures of energy that didn't agree
 - Energy server: uses orbit changes in bypass chicane
 - RF gradient Vector Sums
 - First dipole in bypass
- Temperature sensitivity of LLRF down-converters
- With higher power beams
 - Klystron trips (waveguide power limitations)
 - ACC1 coupler trips
- Manual beam loading compensation worked well, but was tricky, especially with heavy beam loading (not surprisingly)
- Sometimes the machine was very stable, but other times not... (why..?)

What worked well...

- FLASH!!
 - Eg. 15hours uninterrupted with 800us, 3mA
 - Up to 9mA with 100's us for several hours
- LLRF systems were remarkably stable
- New dump-line diagnostics

Example data: energy stability

RF Gradient Long-Term Stability

Pulse-to-Pulse energy jitter example (500us, ~3mA, 200 pulses)

Example data: rf power vs current

Comparison of ACC6 cavity gradients and forward powers for 3mA and 7.5mA

Substantial increase in gradient 'tilts' with 7.5mA (would have quenched with 800us flat-top)

Power during flat-top is higher than the fill power for the 7.5mA case

Gradient had been lowered in 7.5mA case to reduce peak power and prevent klystron trips

Adaptive feed-forward was ON for the 3mA case.

31

Example data: new dump line diagnostics

New dump-line instrumentation

Example data: beam dump temperatures

Beam dump 'thermocouple bpm'

Example data: LOLA measurements during bunch train

18/9/09 03:30 & 05:30

LOLA measurements along bunch-train, (800 bunches @ 1MHz, ~3nC/bunch)

C. Behrens

DAQ data server

- Sample-synchronous pulse-by-pulse data (1MHz)
 - All bpms, toroids, beam loss monitors, phase monitors
 - Energy Server, LLRF Vector Sums
 - Forward & reflected powers, Field Probes for every cavity
 - Coupler PMs and E- monitors
 - Some klystron waveforms
 - Some gun waveforms, some laser waveforms
 - One toroid and one BLM sampled at 81MHz
- 'Slow' data
 - Beam dump thermocouples
 - Magnet currents
 - Cavity tuner positions
 - Vacuum
- Event data
 - Bunch rate, number of bunches
 - BIS and MPS interlocks

Close to 20TB of data available for analysis

Looking ahead...

A few lessons learnt

- Adaptive feed-forward did not work well: more work is needed
- Exception handling: needs work
- Need a 'tuning' mode for long bunch trains...
- Re-evaluate thresholds for integrated beam loss alarms
- The DAQ is incredibly useful in the control room
- We don't know the phases of the RF units relative to each other (to the master reference)

LLRF "Adaptive" feed-forward

- Purpose (promise)
 - Refine the (rectangular) RF power feed-forward waveform to reduce the feedback system effort
 - Fine-tune the refined feed-forward waveform pulse-by-pulse (the adaptive part)
 - Keep in step with drift, etc
 - Automatically tune LLRF beam loading compensation
- It did did not work despite much effort
 - System must be more refined (stable) and robust
 - Exception handling is paramount
 - Dealing with deliberate changes in the number of bunches
 - Dealing with bunch trains that are fore-shortened by MPS
 - Definitely needed for machine automation (XFEL, ILC)

ilr iil

For next time... (examples)

- Complete the study goals, eg operation at gradient limits, HLRF overhead studies,...
- Work towards demonstrating routine operation with heavy beam loading and long pulses
 - Repeatable predictable performance
 - Machine tuning without always needing the experts
 - Run FLASH 'as if it were the ILC or XFEL' (automation)

Closing slide

- Stable operation of FLASH with high beam-loading has been demonstrated, ...but
 - Not all (original) 9mA goals were achieved
 - Routine operation of long bunch trains still requires work
 - Planning for next shifts (proposal) now underway
- Detailed data analysis is just beginning...

