Report from *Physics: Missing Energy* and *Physics: Jet and photon Energy Messurements*

Mikael Berggren¹

¹DESY, Hamburg

ALCPG UNM, Albuquerque, Oct 2009

Mikael Berggren (DESY)

Report from Physics: Missing Energy and Phy

< ロ > < 同 > < 回 > < 回 >

Introduction

Introduction

- Jets and photons:
 - Detector-close issues. I will only list the talks, as most of this was covered in a previous talk
 - Physics
 - Higgs self-coupling from ZHH
 - pMSSM
 - ttH Yukawa
 - ν_R in extra dimensions

Missing energy:

- Non-pointing
- $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ benchmark
- SPS1a' $ilde{ au}$
- Missing mass from kinematic cusps
- Higgs self-coupling from vvHH

I apologise that this presentation will be a bit *Missing energy* biased !

・ ロ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Introduction

Introduction

- Jets and photons:
 - Detector-close issues. I will only list the talks, as most of this was covered in a previous talk
 - Physics
 - Higgs self-coupling from ZHH
 - pMSSM
 - ttH Yukawa
 - ν_R in extra dimensions

• Missing energy:

- Non-pointing γ
- $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ benchmark
- SPS1a' $\tilde{\tau}$
- Missing mass from kinematic cusps
- Higgs self-coupling from $\nu\nu$ HH

apologise that this presentation will be a bit *Missing energy* biased !

Introduction

Introduction

- Jets and photons:
 - Detector-close issues. I will only list the talks, as most of this was covered in a previous talk
 - Physics
 - Higgs self-coupling from ZHH
 - pMSSM
 - ttH Yukawa
 - ν_R in extra dimensions

• Missing energy:

- Non-pointing γ
- $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ benchmark
- SPS1a' $\tilde{\tau}$
- Missing mass from kinematic cusps
- Higgs self-coupling from $\nu\nu$ HH

I apologise that this presentation will be a bit *Missing energy* biased !

Jets & photons

The talks on detector-close issues:

- Marcel Reinhard: γ reconstruction in ILD.
- Calorimetry options:
 - Christian Grefe: Options for multi-TeV.
 - Felix Selkow: Compensation in the CALICE prototype.
 - Stephen Magill: Putting a dual read-out calorimeter in SiD02.
 - Adam Para: Di-jet reconstruction in a crystal calorimeter.

Missing Energy: Issues

- Typical physics: Almost any "visible" new physics, ν rich SM, including Higgs.
- Missing information
 - What is really missing ? Hermiticity
 - What is really seen ? Background sensitivity
 - What should have been seen ? Beam properties
 - How well do we measure what we see ? Detector

<ロ> <問> <問> < 回> < 回> 、

Missing Energy: Issues

- Typical physics: Almost any "visible" new physics, ν rich SM, including Higgs.
- Missing information
 - What is really missing ? Hermiticity
 - What is really seen ? Background sensitivity
 - What should have been seen ? Beam properties
 - How well do we measure what we see ? Detector

Missing Energy: Issues

- Typical physics: Almost any "visible" new physics, ν rich SM, including Higgs.
- Missing information
 - What is really missing ? Hermiticity
 - What is really seen ? Background sensitivity
 - What should have been seen ? Beam properties
 - How well do we measure what we see ? Detector

The physics talks

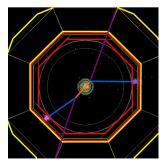
• Full sim studies:

- Nanda Wattimena: Non-pointing γ 's from $\tilde{\chi}_1^0$ decays in GMSB
- Taikan Suehara: The $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ benchmark
- MB: τ̃ in SPS1a'

• Fast sim studies

- Katsumasa Ikematsu: ttH Yukawa @ 500 GeV
- Yosuke Takubo: Light v_R in extra dimensions

Theory


- Ian-Woo Kim: Missing mass from kinematic cusps
- Ulrich Baur: Higgs self-coupling from vvHH and ZHH
- Thomas Rizzo: pMSSM

イロト イヨト イヨト イヨト

The physics talks

iMSB

What we expect ...

- displaced vertices
- missing transverse energy

... and what we need to see it

- ECAL energy resolution
- ECAL position and angular resolution
- detector hermeticity

N. Wattimena (DESY)	${\tilde \chi}^0_1$ Lifetime Determination	September 30, 2009	4 / 11	(Ξ)	2	୬୧୯
Mikael Berggren (DESY)	Report from Physics: Missing E	inergy and Phy	ALCPG A	lbuquer	que	5/6

The physics talks

• Full sim studies:

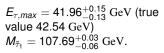
- Nanda Wattimena: Non-pointing γ 's from $\tilde{\chi}_1^0$ decays in GMSB
- Taikan Suehara: The $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ benchmark
- MB: *τ̃* in SPS1a'

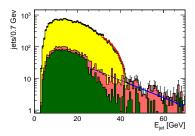
• Fast sim studies

- Katsumasa Ikematsu: ttH Yukawa @ 500 GeV
- Yosuke Takubo: Light v_R in extra dimensions

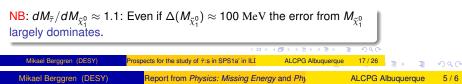
Theory

- Ian-Woo Kim: Missing mass from kinematic cusps
- Ulrich Baur: Higgs self-coupling from vvHH and ZHH
- Thomas Rizzo: pMSSM


イロト イヨト イヨト イヨト


The physics talks

Analysis End-point and cross-section


Fitting the $\tilde{\tau}_1$ mass: Endpoint

- Only the upper end-point is relevant.
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation):
 - MINUIT, ML fit, with MINOS+HESSE.

MSB

The physics talks

• Full sim studies:

- Nanda Wattimena: Non-pointing γ 's from $\tilde{\chi}_1^0$ decays in GMSB
- lacksquare Taikan Suphara: The $ilde{
 u}^0$ and $ilde{
 u}^\pm$ honohmark

NB: Not much sensitivity to $M_{\tilde{\tau}_1}$ from cross-section at 500 GeV - too high !

- Katsumasa Ikematsu: ttH Yukawa @ 500 GeV
 Yasuka Takubat Light _____in artra dimensional
- Yosuke Takubo: Light ν_R in extra dimensions

Theory

- Ian-Woo Kim: Missing mass from kinematic cusps
- Ulrich Baur: Higgs self-coupling from vvHH and ZHH
- Thomas Rizzo: pMSSM

< ロ > < 同 > < 回 > < 回 >

The physics talks

• Full sim studies:

- Nanda Wattimena: Non-pointing γ 's from $\tilde{\chi}_1^0$ decays in GMSB
- Taikan Suehara: The $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ benchmark
- MB: *τ̃* in SPS1a'

Fast sim studies

- Katsumasa Ikematsu: ttH Yukawa @ 500 GeV
- Yosuke Takubo: Light ν_R in extra dimensions

Theory

- Ian-Woo Kim: Missing mass from kinematic cusps
- Ulrich Baur: Higgs self-coupling from vvHH and ZHH
- Thomas Rizzo: pMSSM

The physics talks

• Full sim studies:

- Nanda Wattimena: Non-pointing γ 's from $\tilde{\chi}_1^0$ decays in GMSB
- Taikan Suehara: The $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ benchmark
- MB: *τ̃* in SPS1a'

With beam-polarisation and 1 ab⁻¹ : 5.4 σ signal, $\Delta g/g=$ 9% @ 500 GeV

- Theory
 - Ian-Woo Kim: Missing mass from kinematic cusps
 - Ulrich Baur: Higgs self-coupling from vvHH and ZHH
 - Thomas Rizzo: pMSSM

The physics talks

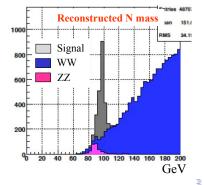
- Full sim studies:
 - Nanda Wattimena: Non-pointing γ 's from $\tilde{\chi}_1^0$ decays in GMSB
 - Taikan Suehara: The $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ benchmark
 - MB: *τ̃* in SPS1a'
- Fast sim studies
 - Katsumasa Ikematsu: ttH Yukawa @ 500 GeV
 - Yosuke Takubo: Light ν_R in extra dimensions
- Theory
 - Ian-Woo Kim: Missing mass from kinematic cusps
 - Ulrich Baur: Higgs self-coupling from vvHH and ZHH
 - Thomas Rizzo: pMSSM

The physics talks

Signal significance

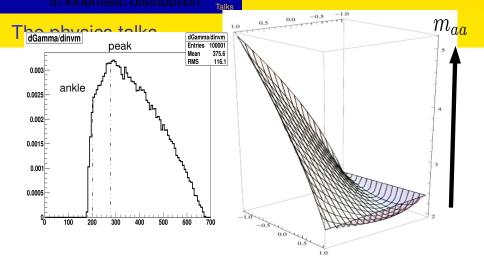
The sensitivity to N was estimated after the selection cut.

• • Singal: 1,537


- BG: 800
- → Signal significance : 31.6

 $\rightarrow \Delta \sigma(\nu N \rightarrow \nu \mu q q)$: 3.2%

Right-handed neutrinos of the 1st KK mode can be observed at ILC.


The next step

- Xsec measurement of electron and muon modes.
- Study of the 2nd KK mode.

The physics talks

- Full sim studies:
 - Nanda Wattimena: Non-pointing γ 's from $\tilde{\chi}_1^0$ decays in GMSB
 - Taikan Suehara: The $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ benchmark
 - MB: $\tilde{\tau}$ in SPS1a'
- Fast sim studies
 - Katsumasa Ikematsu: ttH Yukawa @ 500 GeV
 - Yosuke Takubo: Light ν_R in extra dimensions
- Theory
 - Ian-Woo Kim: Missing mass from kinematic cusps
 - Ulrich Baur: Higgs self-coupling from $\nu\nu$ HH and ZHH
 - Thomas Rizzo: pMSSM

æ

イロン イ理 とく ヨン イヨン

The physics talks

- Full sim studies:
 - Nanda Wattimena: Non-pointing γ 's from $\tilde{\chi}_1^0$ decays in GMSB
 - Taikan Suehara: The $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ benchmark
 - MB: τ̃ in SPS1a'
- Fast sim studies
 - Katsumasa Ikematsu: ttH Yukawa @ 500 GeV
 - Yosuke Takubo: Light ν_R in extra dimensions
- Theory
 - Ian-Woo Kim: Missing mass from kinematic cusps
 - Ulrich Baur: Higgs self-coupling from $\nu\nu$ HH and ZHH
 - Thomas Rizzo: pMSSM

The physics talks

- Full sim studies:
 - Nanda Wattimena: Non-pointing γ 's from $\tilde{\chi}_1^0$ decays in GMSB
 - Taikan Suehara: The $\tilde{\chi}^0_2$ and $\tilde{\chi}^\pm_1$ benchmark
 - MB: $\tilde{\tau}$ in SPS1a'
- Fast sim studies
 - Katsumasa Ikematsu: ttH Yukawa @ 500 GeV
 - Yosuke Takubo: Light ν_R in extra dimensions

```
- -----
```

ZHH even harder if M_H =140 $\nu\nu$ HH @ 1 TeV promising

I homas Rizzo: pMSSM

< ロ > < 同 > < 回 > < 回 >

The physics talks

- Full sim studies:
 - Nanda Wattimena: Non-pointing γ 's from $\tilde{\chi}_1^0$ decays in GMSB
 - Taikan Suehara: The $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ benchmark
 - MB: τ̃ in SPS1a'
- Fast sim studies
 - Katsumasa Ikematsu: ttH Yukawa @ 500 GeV
 - Yosuke Takubo: Light ν_R in extra dimensions
- Theory
 - Ian-Woo Kim: Missing mass from kinematic cusps
 - Ulrich Baur: Higgs self-coupling from $\nu\nu$ HH and ZHH
 - Thomas Rizzo: pMSSM

The physics talks

- Full sim studies:
 - Nanda Wattimena: Non-pointing γ 's from $\tilde{\chi}_1^0$ decays in GMSB
 - Taikan Suehara: The $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ benchmark
 - MB: τ̃ in SPS1a'
- Fast sim studies
 - Katsumasa Ikematsu: ttH Yukawa @ 500 GeV
 - Yosuke Takubo: Light ν_R in extra dimensions
- Theory
 - Ian-Woo Kim: Missing mass from kinematic cusps

Expect the un-expected: odd NLSP, detector-stable particles, squarks and gluinos, even that ILC could be the discovery machine!

Discussion session

- Michael Peskin convinced us the new benchmarks is a good idea but can't we call it something more interesting ;-)
- At least for *Missing Energy*, the detector is often not an issue: statistics dominated
- Beam-properties is an issue:
 - Beam-background spoils topology, even if it carries little energy.
 - Pairs might worsen hermiticity.
 - For end-points, cusps, thresholds, of-peak luminosity is useless.
 - Being able to choose *E_{cms}* strengthens the power of the ILC for eg. low mass SUSY enormously.
 - Same goes for polarisation.
- To study this: We need input from our machine colleagues, and we need it now, to be able to say anything by December.

Conclusions

Conclusions

- Michael Peskin convinced us the new benchmarks is a good idea but can't we call it something more interesting ;-)
- At least for *Missing Energy*, the detector is often not an issue: statistics dominated
- Beam-properties is an issue:
 - Beam-background spoils topology, even if it carries little energy.
 - Pairs might worsen hermiticity.
 - For end-points, cusps, thresholds, of-peak luminosity is useless.
 - Being able to choose *E_{cms}* strengthens the power of the ILC for eg. low mass SUSY enormously.
 - Same goes for polarisation.
- To study this: We need input from our machine colleagues, and we need it now, to be able to say anything by December.