Prospects for the study of $\tilde{\tau}$:s in SPS1a' in ILD

Mikael Berggren¹

¹DESY, Hamburg

ALCPG UNM, Albuquerque, Sept 2009

Mikael Berggren (DESY)

Prospects for the study of $\tilde{\tau}$:s in SPS1a' in ILI

ALCPG Albuquerque 1 / 26

< ロ > < 同 > < 回 > < 回 >

Outline

SPS1a'

The $\tilde{\tau}$ channel

Analysis

- Overview
- Suppress beam-background
- $\gamma\gamma$ suppression
- Finding τ :s
- Topology selection
- End-point and cross-section
- The au Polarisation

Comments

Conclusions

Introduction

What can be done if SUSY exists, and is "next to LEP", and we use a real detector ?

- Study SPS1a'
- Weak-scale parameters with SPheno
- Whizard for event simulation (Produced at DESY)
- GuineaPig for beam-background
- DESY mass-production for both SUSY and SM:
 - Full simulation: ILD_00 in Mokka
 - Reconstruction using Marlin
- Study τ channels

People involved

• Olga Stempel, Peter Schade, J. List, P. Bechtle, M.B.

< ロ > < 同 > < 回 > < 回 >

SPS1a

SPS1a'

Pure mSUGRA model:

$$M_{1/2} = 250 \ GeV, M_0 = 70 \ GeV, A_0 = -300 \ GeV,$$

tan $\beta = 10, sign(\mu) = +1$

Just outside what is excluded by LEP and low-energy observations. Compatible with WMAP, with $\tilde{\chi}_1^0$ Dark Matter. Close to "best fit" to present data.

- All sleptons available.
- No squarks.
- Lighter bosinos, up to $\tilde{\chi}^0_3$ (in $\,e^+e^-\,{\rightarrow}\tilde{\chi}^0_1\tilde{\chi}^0_3)$

< ロ > < 同 > < 回 > < 回 >

- In SPS1a', the $\tilde{\tau}_1$ is the NLSP.
- $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}, M_{\tilde{\tau}_2} = 194.9 \text{ GeV}, M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}$
- $E_{\tilde{\tau}_1,min} = 2.6 \text{ GeV}, E_{\tilde{\tau}_1,max} = 42.5 \text{ GeV}: \gamma \gamma \text{ background}.$
- $E_{\tilde{\tau}_2,min} = 35.0 \text{ GeV}, E_{\tilde{\tau}_2,max} = 152.2 \text{ GeV}: WW \rightarrow l\nu l\nu$ background.
- Co-annihilation important for Dark Matter: $M_{\tilde{\tau}_1}$ important.
- The $\tilde{\tau}$ mass-eigen states \neq chiral-eigen states: $\tilde{\tau}$ -mixing
 - With $M_{\tilde{\mu}_{L}}$ and $M_{\tilde{\mu}_{R}}$, a measurement of θ_{mix} gives $A_{\tilde{\tau}} \mu \tan \beta$.
 - Cross-section depends on θ_{mix} and beam-polarisation.
 - au polarisation depends on $heta_{mix}$ and on $ilde{\chi}_1^0$ -mixing

- In SPS1a', the $\tilde{\tau}_1$ is the NLSP.
- $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}, M_{\tilde{\tau}_2} = 194.9 \text{ GeV}, M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}$
- $E_{\tilde{\tau}_1,min} = 2.6 \text{ GeV}, E_{\tilde{\tau}_1,max} = 42.5 \text{ GeV}: \gamma \gamma \text{ background}.$
- $E_{\tilde{\tau}_2,min} = 35.0 \text{ GeV}, E_{\tilde{\tau}_2,max} = 152.2 \text{ GeV}: WW \rightarrow l\nu l\nu$ background.
- Co-annihilation important for Dark Matter: $M_{\tilde{\tau}_1}$ important.
- The $\tilde{\tau}$ mass-eigen states \neq chiral-eigen states: $\tilde{\tau}$ -mixing
 - With $M_{\tilde{\mu}_{t}}$ and $M_{\tilde{\mu}_{R}}$, a measurement of θ_{mix} gives $A_{\tilde{\tau}} \mu \tan \beta$.
 - Cross-section depends on θ_{mix} and beam-polarisation.
 - au polarisation depends on $heta_{mix}$ and on $\tilde{\chi}_1^0$ -mixing

イロト 不得 トイヨト イヨト

- In SPS1a', the $\tilde{\tau}_1$ is the NLSP.
- $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}, M_{\tilde{\tau}_2} = 194.9 \text{ GeV}, M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}$
- $E_{\tilde{\tau}_1,min} = 2.6 \text{ GeV}, E_{\tilde{\tau}_1,max} = 42.5 \text{ GeV}: \gamma \gamma \text{ background}.$
- $E_{\tilde{\tau}_2,min} = 35.0 \text{ GeV}, E_{\tilde{\tau}_2,max} = 152.2 \text{ GeV}: WW \rightarrow l\nu l\nu$ background.
- Co-annihilation important for Dark Matter: $M_{\tilde{\tau}_1}$ important.
- The $\tilde{\tau}$ mass-eigen states \neq chiral-eigen states: $\tilde{\tau}$ -mixing
 - With $M_{\tilde{\mu}_{L}}$ and $M_{\tilde{\mu}_{R}}$, a measurement of θ_{mix} gives $A_{\tilde{\tau}} \mu \tan \beta$.
 - Cross-section depends on θ_{mix} and beam-polarisation.
 - τ polarisation depends on θ_{mix} and on $\tilde{\chi}_1^0$ -mixing.

• $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays (BR(X $\rightarrow \tilde{\tau}$) > 50 %) \rightarrow SUSY is background to SUSY.

Note:

- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb.
- For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.
- → Use Polarisation = (0.8,-0.3)

- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays (BR(X $\rightarrow \tilde{\tau}$) > 50 %) \rightarrow SUSY is background to SUSY.
- Note:
 - For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

 - \rightarrow Use Polarisation = (0.8,-0.3)

Extracting the $\tilde{\tau}$ properties

Mass from decay kinematics:

- $M_{\tilde{\tau}}$ from $M_{\tilde{\chi}_1^0}$ and end-point of spectrum = $E_{\tau,max}$.
- Need to measure end-point of spectrum.
- In principle: $M_{\tilde{\chi}_1^0}$ turn-over of spectrum = $P_{\tau,min}$, but hidden in $\gamma\gamma$ background.
- Must get $M_{\tilde{\chi}^0_1}$ from other sources. ($\tilde{\mu}$, \tilde{e} , not yet done)

Mass from cross-section:

•
$$\sigma_{\tilde{\tau}} = A(\theta_{\tilde{\tau}}, \mathcal{P}_{beam}) \times \beta^3 / s$$
, so
• $M_{\tilde{\tau}} = E_{beam} \sqrt{1 - (\sigma s / A)^{2/3}}$: no $M_{\tilde{\chi}_1^0}$!

Polarisation from decay spectra:

• P from spectrum for exclusive decay-mode(s). Here: $\tau \to \pi^{+-}\nu_{\tau}$ and $\tau \to \rho^{+-}\nu_{\tau} \to \pi^{+-}\pi^{0}\nu_{\tau}$

Overview of Analysis

- Common to all aspects:
 - Reduce beam-beam background
 - Reduce $\gamma\gamma$ background
 - Find τ candidates
 - Select $\tilde{\tau}$ -like topology
- Then specialise:
 - For mass: select events close to end point to reduce γγ background. Different for τ
 ₁ and τ
 ₂.
 - For polarisation: Select decay mode \rightarrow PID.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simulation method

- Generate 1000 bunch-crossings with GuineaPig.
- Add simulated and reconstructed beam-background only events on beam-background free, fully simulated and reconstructed physics events → under-estimate pattern rec. problems.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Most beam-background tracks seen in the tracker are low P_T
- or fakes.
- Reject by : *E* > 500MeV
- ... and demand associated TPC hits for charged.

- Most beam-background tracks seen in the tracker are low P_T
- or fakes.
- Reject by : *E* > 500MeV
- ... and demand associated TPC hits for charged.

- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : *E* > 500MeV
- ... and demand associated TPC hits for charged.

10/26

- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : *E* > 500MeV
- ... and demand associated TPC hits for charged.

10/26

< ロ > < 同 > < 回 > < 回 >

- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : E > 500 MeV
- ... and demand associated TPC hits for charged.

< ロ > < 同 > < 回 > < 回 >

10/26

- Most beam-background tracks seen in the tracker are low P_T
- .. or fakes.
- Reject by : $E > 500 \mathrm{MeV}$
- ... and demand associated TPC hits for charged.

Veto beam-remnant electrons:

- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.
- Visible system now almost back-to-back in transversal view
 - Correlated cut in ρ and θ_{acop}:
 ρ > 2.7 sin θ_{acop} + 1.8.

Veto beam-remnant electrons: no significant activity in the BeamCal

- φ_{p miss} not in the direction of the incoming beam-pipe.
- Visible system now almost back-to-back in transversal view
 - Correlated cut in ρ and θ_{acop}:
 ρ > 2.7 sin θ_{acop} + 1.8.

$\gamma\gamma$ suppression

Veto beam-remnant electrons:

- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.

Visible system now almost back-to-back in transversal view

Correlated cut in ρ and θ_{acop}:
 ρ > 2.7 sin θ_{acop} + 1.8.

.

Veto beam-remnant electrons:

- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.

Visible system now almost back-to-back in transversal view

• Correlated cut in ρ and θ_{acop} : $\rho > 2.7 \sin \theta_{acop} + 1.8$.

Veto beam-remnant electrons:

- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.
- Visible system now almost back-to-back in transversal view
 - Correlated cut in ρ and θ_{acop} : $\rho > 2.7 \sin \theta_{acop} + 1.8$.

Veto beam-remnant electrons:

- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.

Visible system now almost back-to-back in transversal view

• Correlated cut in ρ and θ_{acop} : $\rho > 2.7 \sin \theta_{acop} + 1.8$.

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ -finder:

- Test all possible ways to group the charged tracks in the event in collections with $M < 2 \text{ GeV}/c^2$.
- Prefer the grouping giving the lowest number of groups.
- If more than one possible, use the one with lowest ΣM .
- Ind when no smaller number of groups possible.
- Then add any neutrals to the groups, always selecting the situation giving the lowest mass
- If the lowest mass is $> 2 \text{ GeV}/c^2$, leave the neutral to the "Rest-of-event" group

Additional options not yet exploited: Special treatment of leptons, neutral hadrons.

ALCPG Albuquerque 12 / 26

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ -finder:

- Test all possible ways to group the charged tracks in the event in collections with $M < 2 \text{ GeV}/c^2$.
- Prefer the grouping giving the lowest number of groups.
- If more than one possible, use the one with lowest ΣM .
- Ind when no smaller number of groups possible.
- Then add any neutrals to the groups, always selecting the situation giving the lowest mass
- If the lowest mass is $> 2 \text{ GeV}/c^2$, leave the neutral to the "Rest-of-event" group

Additional options not yet exploited: Special treatment of leptons, neutral hadrons.

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ -finder:

- Test all possible ways to group the charged tracks in the event in collections with $M < 2 \text{ GeV}/c^2$.
- Prefer the grouping giving the lowest number of groups.
- If more than one possible, use the one with lowest ΣM .
- Ind when no smaller number of groups possible.
- Then add any neutrals to the groups, always selecting the situation giving the lowest mass
- If the lowest mass is $> 2 \text{ GeV}/c^2$, leave the neutral to the "Rest-of-event" group

Additional options not yet exploited: Special treatment of leptons, neutral hadrons.

ALCPG Albuquerque 12 / 26

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ -finder:

- Test all possible ways to group the charged tracks in the event in collections with $M < 2 \text{ GeV}/c^2$.
- Prefer the grouping giving the lowest number of groups.
- If more than one possible, use the one with lowest ΣM .
- Ind when no smaller number of groups possible.
- Then add any neutrals to the groups, always selecting the situation giving the lowest mass
- If the lowest mass is $> 2 \text{ GeV}/c^2$, leave the neutral to the "Rest-of-event" group

Additional options not yet exploited: Special treatment of leptons, neutral hadrons.

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ -finder:

- Test all possible ways to group the charged tracks in the event in collections with $M < 2 \text{ GeV}/c^2$.
- Prefer the grouping giving the lowest number of groups.
- If more than one possible, use the one with lowest ΣM .
- Ind when no smaller number of groups possible.
- Then add any neutrals to the groups, always selecting the situation giving the lowest mass
- If the lowest mass is $> 2 \text{ GeV}/c^2$, leave the neutral to the "Rest-of-event" group

Additional options not yet exploited: Special treatment of leptons, neutral hadrons.

Performs better than Durham forced to two jets already without background:

BLUE: Durham, RED: DELPHI

Mikael Berggren (DESY)

Prospects for the study of $\tilde{\tau}$:s in SPS1a' in ILI

ALCPG Albuquerque
 13/26

Topology selection

$\tilde{\tau}$ properties:

- Only two τ :s in the final state.
- Large missing energy and momentum.
- High acollinearity, with modest correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.

Select this by:

- Exactly two jets.
- *N_{ch}* < 10
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \, {
 m GeV}/c^2$,
- *E_{vis}* < 300 GeV,
- $M_{miss} > 250 \text{ GeV}/c^2$,
- No particle with momentum above 180 GeV/*c* in the event.

Topology selection

$\tilde{\tau}$ properties:

- Only two τ :s in the final state.
- Large missing energy and momentum.
- High acollinearity, with modest correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.

Select this by:

- Exactly two jets.
- *N_{ch}* < 10
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- *E_{vis}* < 300 GeV,
- $M_{miss} > 250 \text{ GeV}/c^2$,
- No particle with momentum above 180 GeV/c in the event.

End-point and cross-section

Additional cuts against $\gamma\gamma$:

- $|\cos \theta_{missing momentum}| < 0.8$
- Low fraction of "Rest-of-Event" energy at low angles.
- Good agreement *p*_{track} *E*_{calo}

From now on: Different cuts for $\tilde{\tau}_1$ ($\gamma\gamma$ background), and $\tilde{\tau}_2$ (*WW* background).

$\tilde{\tau}_1$ End-point and cross-section

Against $\gamma\gamma$:

- $E_{vis} < 120 \text{ GeV},$
- $|\cos \theta_{jet}| < 0.9$ for both jets,
- $heta_{acop} > 85^\circ$,
- $M_{vis} > 20 \text{ GeV}/c^2$.

Against other, heavier, SUSY particles:

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$

 N_{sign} = 9800 (Efficiency 14.2 %) $N_{bck,SM}$ = 390 , $N_{bck,SUSY}$ = 1020.

$\tilde{\tau}_1$ End-point and cross-section

Against $\gamma\gamma$:

- $E_{vis} < 120 \text{ GeV},$
- $|\cos \theta_{jet}| < 0.9$ for both jets,
- $heta_{acop} > 85^\circ$,
- $M_{vis} > 20 \text{ GeV}/c^2$.

Against other, heavier, SUSY particles:

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$

 N_{sign} = 9800 (Efficiency 14.2 %) $N_{bck,SM}$ = 390 , $N_{bck,SUSY}$ = 1020.

$\tilde{\tau}_1$ End-point and cross-section

Against $\gamma\gamma$:

- *E_{vis}* < 120 GeV,
- $|\cos \theta_{jet}| < 0.9$ for both jets,
- $heta_{acop} > 85^\circ$,
- $M_{vis} > 20 \text{ GeV}/c^2$.

Against other, heavier, SUSY particles:

(*E_{jet1} + E_{jet2}*) sin θ_{acop} < 30 GeV.

Against $\gamma\gamma$:

- $E_{vis} > 50 \text{ GeV}.$
- $M_{vis} > 20 \text{ GeV}/c^2$.
- $\theta_{acop} < 155^{\circ}$.

Against $WW \rightarrow l\nu l\nu$:

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

 $N_{sign} = 2000 \text{ (Efficiency 22.4 \%)} \\ N_{bck,SM} = 1700 \text{ , } N_{bck,SUSY} = 460.$

Against $\gamma\gamma$:

- $E_{vis} > 50 \text{ GeV}.$
- $M_{vis} > 20 \text{ GeV}/c^2$.
- $\theta_{acop} < 155^{\circ}$.

Against $WW \rightarrow l\nu l\nu$:

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

 $N_{sign} = 2000 \text{ (Efficiency 22.4 \%)} \\ N_{bck,SM} = 1700 \text{ , } N_{bck,SUSY} = 460.$

Against $\gamma\gamma$:

- $E_{vis} > 50 \text{ GeV}.$
- $M_{vis} > 20 \text{ GeV}/c^2$.
- $\theta_{acop} < 155^{\circ}$.

Against $WW \rightarrow l\nu l\nu$:

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

 $N_{sign} = 2000 \text{ (Efficiency 22.4 \%)} \\ N_{bck,SM} = 1700 \text{ , } N_{bck,SUSY} = 460.$

Against $\gamma\gamma$:

- $E_{vis} > 50 \text{ GeV}.$
- $M_{vis} > 20 \text{ GeV}/c^2$.
- $\theta_{acop} < 155^{\circ}$.

Against $WW \rightarrow l\nu l\nu$:

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1}cosθ_{jet1},q_{jet2}cosθ_{jet2})

 $N_{sign} = 2000 \text{ (Efficiency 22.4 \%)} \\ N_{bck,SM} = 1700 \text{ , } N_{bck,SUSY} = 460.$

イロト イヨト イヨト イヨト

Fitting the $\tilde{\tau}_1$ mass: Endpoint

- Only the upper end-point is relevant.
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation):
 - MINUIT, ML fit, with MINOS+HESSE.

 $E_{ au,max} = 41.96^{+0.15}_{-0.13} \text{ GeV}$ (true value 42.54 GeV) $M_{ ilde{ au}_1} = 107.69^{+0.03}_{-0.06} \text{ GeV}.$

NB: $dM_{\tilde{\tau}}/dM_{\tilde{\chi}_1^0} \approx 1.1$: Even if $\Delta(M_{\tilde{\chi}_1^0}) \approx 100$ MeV the error from $M_{\tilde{\chi}_1^0}$ largely dominates.

Fitting the $\tilde{\tau}_1$ mass: Endpoint

- Only the upper end-point is relevant.
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation):
 - MINUIT, ML fit, with MINOS+HESSE.

NB: $dM_{\tilde{\tau}}/dM_{\tilde{\chi}_1^0} \approx 1.1$: Even if $\Delta(M_{\tilde{\chi}_1^0}) \approx 100 \text{ MeV}$ the error from $M_{\tilde{\chi}_1^0}$ largely dominates.

ALCPG Albuquerque 17 / 26

Fitting the $\tilde{\tau}_2$ mass: Endpoint

- Only the upper end-point is relevant.
- Region above 45 GeV is free of SUSY background. Fit exponential SM simulation.
- Fit line to (data-background fit extrapolation):
 - MINUIT, ML fit, with MINOS+HESSE.

 $E_{ au,max} = 151.2^{+1.9}_{-1.6} \text{ GeV}$ (true value 152.2 GeV) $M_{\tilde{\tau}_2} = 183^{+11}_{-5} \text{ GeV}.$

NB: $dM_{\tilde{\chi}_1^0} \approx 18$: Even if $\Delta(M_{\tilde{\chi}_1^0}) \approx 500$ MeV the error from the endpoint dominates.

Mikael Berggren (DESY)

Prospects for the study of $ilde{ au}$:s in SPS1a' in IL[

Fitting the $\tilde{\tau}_2$ mass: Endpoint

- Only the upper end-point is relevant.
- Region above 45 GeV is free of SUSY background. Fit exponential SM simulation.
- Fit line to (data-background fit extrapolation):
 - MINUIT, ML fit, with MINOS+HESSE.

 $E_{ au,max} = 151.2^{+1.9}_{-1.6} \text{ GeV}$ (true value 152.2 GeV) $M_{ ilde{ au}_2} = 183^{+11}_{-5} \text{ GeV}.$

NB: $dM_{\tilde{\chi}_1^0} \approx 18$: Even if $\Delta(M_{\tilde{\chi}_1^0}) \approx 500$ MeV the error from the endpoint dominates.

End-point and cross-section

Fitting the $\tilde{\tau}_1$ mass: Cross-section

- Main background is SM: well known.
- Some SUSY background: poorly known.
- Select region where SUSY bck is as low as possible.

$$\Delta(N_{signal})/N_{signal} = 3.1\%$$

 $\Delta(M_{\tilde{\tau}_1})/M_{\tilde{\tau}_1} = 1/2$
 $\Delta(\sigma)/\sigma)(\beta^2)/3(1-\beta^2) = 2.1\%$, ie.
 $\Delta(M_{\tilde{\tau}_1}) = 3.2 \text{ GeV}/c^2$

End-point and cross-section

Fitting the $\tilde{\tau}_1$ mass: Cross-section

- Main background is SM: well known.
- Some SUSY background: poorly known.
- Select region where SUSY bck is as low as possible.

$$\begin{array}{l} \Delta(N_{signal})/N_{signal}=3.1\%\ \Delta(M_{ ilde{ au}_1})/M_{ ilde{ au}_1}=\ (\Delta(\sigma)/\sigma)(eta^2)/3(1-eta^2)=2.1\%, \ {
m ie.}\ \Delta(M_{ ilde{ au}_1})=3.2\ {
m GeV}/c^2 \end{array}$$

Fitting the $\tilde{\tau}_2$ mass: Cross-section

- Main background is SM: well known.
- Hardly any SUSY background beyond τ₁ endpoint.
- Select this region.

 $\begin{array}{l} \Delta(N_{signal})/N_{signal} = 4.2\%\\ \Delta(M_{\tilde{\tau}_2})/M_{\tilde{\tau}_2} = \\ (\Delta(\sigma)/\sigma)(\beta^2)/3(1-\beta^2) = 2.4\%, \text{ ie.}\\ \Delta(M_{\tilde{\tau}_2}) = 3.6 \text{ GeV}/c^2\\ \text{End-point + Cros-section}\\ \rightarrow \Delta(M_{\tilde{\chi}_1^0}) = 1.7 \text{ GeV}/c^2 \end{array}$

Fitting the $\tilde{\tau}_2$ mass: Cross-section

- Main background is SM: well known.
- Hardly any SUSY background beyond τ₁ endpoint.
- Select this region.

$$\begin{split} &\Delta(N_{signal})/N_{signal} = 4.2\% \\ &\Delta(M_{\tilde{\tau}_2})/M_{\tilde{\tau}_2} = \\ &(\Delta(\sigma)/\sigma)(\beta^2)/3(1-\beta^2) = 2.4\%, \text{ ie.} \\ &\Delta(M_{\tilde{\tau}_2}) = 3.6 \text{ GeV}/c^2 \\ &\text{End-point + Cros-section} \\ &\rightarrow \Delta(M_{\tilde{\chi}_1^0}) = 1.7 \text{ GeV}/c^2 \end{split}$$

< 🗇 🕨

- B

- $\tilde{\tau}$ L-R mix $\otimes \tilde{\chi}_1^0$ gaugino-higgsino mix $\rightarrow \tau$ Polarisation
- Due to non-existance of ν_R, τ polarisation reflects in τ decay-product spectrum.
- If $\tau \rightarrow \nu$ +(pseudo)scalar:
 - ν mostly backward/forward for τ_R/τ_L
 - \rightarrow Hard visible spectum: τ_R , Soft visible spectum: τ_L .
 - *Absoulte* energy counts: Need to correct for ISR and beam-strahlung!

If $\tau \rightarrow \nu$ +Vector :

- ν + V is L/R if vector is T/L
- V mostly L for τ_R , T for τ_L .
- Decay products along/perp to axis for L/T
- le. E_1/E_{tot} banana: τ_R , bell: τ_L

• *Relative* energy counts: No need to correct for ISR and beam-strahlung!

For both: need to get $\epsilon(E_{vis})$ and background from MC.

- $\tilde{\tau}$ L-R mix $\otimes \tilde{\chi}_1^0$ gaugino-higgsino mix $\rightarrow \tau$ Polarisation
- Due to non-existance of ν_R, τ polarisation reflects in τ decay-product spectrum.
- If $\tau \rightarrow \nu$ +(pseudo)scalar:
 - ν mostly backward/forward for τ_{R}/τ_{L}
 - \rightarrow Hard visible spectum: τ_R , Soft visible spectum: τ_L .
 - Absoulte energy counts: Need to correct for ISR and beam-strahlung!

If $\tau \rightarrow \nu$ +Vector :

- ν + V is L/R if vector is T/L
- V mostly L for τ_R , T for τ_L .
- Decay products along/perp to axis for L/T
- le. E_1/E_{tot} banana: τ_R , bell: τ_L

• *Relative* energy counts: No need to correct for ISR and beam-strahlung!

For both: need to get $\epsilon(E_{vis})$ and background from MC.

- $\tilde{\tau}$ L-R mix $\otimes \tilde{\chi}^0_1$ gaugino-higgsino mix $\rightarrow \tau$ Polarisation
- Due to non-existance of ν_R, τ polarisation reflects in τ decay-product spectrum.
- If $\tau \rightarrow \nu$ +(pseudo)scalar:
 - ν mostly backward/forward for $\tau_{\rm R}/\tau_{\rm L}$
 - \rightarrow Hard visible spectum: τ_R , Soft visible spectum: τ_L .
 - *Absoulte* energy counts: Need to correct for ISR and beam-strahlung!

If $\tau \rightarrow \nu \text{+} \text{Vector}$:

- ν + V is L/R if vector is T/L
- V mostly L for τ_R , T for τ_L .
- Decay products along/perp to axis for L/T
- Ie. E_1/E_{tot} banana: τ_R , bell: τ_L

• *Relative* energy counts: No need to correct for ISR and beam-strahlung!

For both: need to get $\epsilon(E_{vis})$ and background from MC.

- $\tilde{\tau}$ L-R mix $\otimes \tilde{\chi}^0_1$ gaugino-higgsino mix $\rightarrow \tau$ Polarisation
- Due to non-existance of ν_R, τ polarisation reflects in τ decay-product spectrum.
- If $\tau \rightarrow \nu$ +(pseudo)scalar:
 - ν mostly backward/forward for $\tau_{\rm R}/\tau_{\rm L}$
 - \rightarrow Hard visible spectum: τ_R , Soft visible spectum: τ_L .
 - Absoulte energy counts: Need to correct for ISR and beam-strahlung!

If $\tau \rightarrow \nu + \text{Vector}$:

- ν + V is L/R if vector is T/L
- V mostly L for τ_R , T for τ_L .
- Decay products along/perp to axis for L/T
- Ie. E_1/E_{tot} banana: τ_R , bell: τ_L

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

• *Relative* energy counts: No need to correct for ISR and beam-strahlung!

For both: need to get $\epsilon(E_{vis})$ and background from MC.

- The events should pass the topology selection and anti- $\gamma\gamma$ cut.
- *E_{vis}* < 90 GeV.
- No jet with $E > 60 \text{ GeV}(43 \text{ GeV} \text{ for } \rho \text{ channel})$

Extract the
$$\tau \rightarrow \pi^{+-}\nu_{\tau}$$
 signal.

- At least one jets should contain a single particle.
- The particle should have a π-id (both calorimetric and dE/dx).
- Also kills remaining $\gamma\gamma$

Extract the $\tau \rightarrow \rho^{+-} \nu_{\tau}$ signal.

- At least one jets should contain one charged particle, and at least two neutrals.
- The charged particle should have a π-id (*dE*/*dx* only).

• Sizable $\gamma\gamma$ background remains.

Calorimetric PID doesn't work in ρ channel because γ 's from π^0 are close to $\pi^{\pm} \rightarrow$ looks like an e^{\pm}

- The events should pass the topology selection and anti- $\gamma\gamma$ cut.
- $E_{vis} < 90 \text{ GeV}.$
- No jet with $E > 60 \text{ GeV}(43 \text{ GeV} \text{ for } \rho \text{ channel})$

Extract the $\tau \rightarrow \pi^{+-}\nu_{\tau}$ signal.

- At least one jets should contain a single particle.
- The particle should have a π-id (both calorimetric and dE/dx).
- Also kills remaining $\gamma\gamma$

Extract the $\tau \rightarrow \rho^{+-} \nu_{\tau}$ signal.

- At least one jets should contain one charged particle, and at least two neutrals.
- The charged particle should have a π-id (*dE*/*dx* only).

• Sizable $\gamma\gamma$ background remains.

Calorimetric PID doesn't work in ρ channel because γ 's from π^0 are close to $\pi^{\pm} \rightarrow$ looks like an e^{\pm}

- The events should pass the topology selection and anti- $\gamma\gamma$ cut.
- $E_{vis} < 90 \text{ GeV}.$
- No jet with $E > 60 \text{ GeV}(43 \text{ GeV} \text{ for } \rho \text{ channel})$

Extract the $\tau \rightarrow \pi^{+-}\nu_{\tau}$ signal.

- At least one jets should contain a single particle.
- The particle should have a π-id (both calorimetric and dE/dx).
- Also kills remaining $\gamma\gamma$

Extract the $\tau \rightarrow \rho^{+-} \nu_{\tau}$ signal.

- At least one jets should contain one charged particle, and at least two neutrals.
- The charged particle should have a π-id (*dE*/*dx* only).

• Sizable $\gamma\gamma$ background remains.

Calorimetric PID doesn't work in ρ channel because γ 's from π^0 are close to $\pi^{\pm} \rightarrow$ looks like an e^{\pm}

ALCPG Albuquerque 20 / 26

- The events should pass the topology selection and anti- $\gamma\gamma$ cut.
- $E_{vis} < 90 \text{ GeV}.$
- No jet with $E > 60 \text{ GeV}(43 \text{ GeV} \text{ for } \rho \text{ channel})$

Extract the $\tau \rightarrow \pi^{+-}\nu_{\tau}$ signal.

- At least one jets should contain a single particle.
- The particle should have a π-id (both calorimetric and dE/dx).
- Also kills remaining $\gamma\gamma$

Extract the $\tau \rightarrow \rho^{+-} \nu_{\tau}$ signal.

- At least one jets should contain one charged particle, and at least two neutrals.
- The charged particle should have a π-id (*dE*/*dx* only).

• Sizable $\gamma\gamma$ background remains.

Calorimetric PID doesn't work in ρ channel because γ 's from π^0 are close to $\pi^{\pm} \rightarrow$ looks like an e^{\pm}

Bacground estimate

- SUSY dominates
- Assume $\Delta_{theor} = \Delta_{exp}$, with ILC as only relevant input.
- Δ_{exp} from signal-depleted control sample.
- Due to lack of statistics in the SM γγ-sample, no serious estimate of uncertainty due to background can be done in the ρ-channel!

Bacground estimate

- SUSY dominates
- Assume $\Delta_{theor} = \Delta_{exp}$, with ILC as only relevant input.
- Δ_{*exp*} from signal-depleted control sample.
- Due to lack of statistics in the SM γγ-sample, no serious estimate of uncertainty due to background can be done in the ρ-channel!

Bacground estimate

- SUSY dominates
- Assume $\Delta_{theor} = \Delta_{exp}$, with ILC as only relevant input.
- Δ_{*exp*} from signal-depleted control sample.
- Due to lack of statistics in the SM γγ-sample, no serious estimate of uncertainty due to background can be done in the ρ-channel!

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Efficency and spectrum correction:

Select events.

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
 - ϵ(-1, E), ϵ(0, E), ϵ(+1, E)
 from fastsim.
- Spectrum (π channel only!)
 - Parametrise actual spectrum for $\mathcal{P}_{\tau} = \pm 1$ (= $F(E, \pm 1)$)
 - Irue spectrum will be $F(E, \mathcal{P}_{\pi}) = \frac{1+\mathcal{P}_{\pi}}{2}F(E, +1)$

Efficency and spectrum correction:

- Select events.
- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
 - ϵ(-1, E), ϵ(0, E), ϵ(+1, E)
 from fastsim.
- Spectrum (π channel only!)
 - Parametrise actual spectrum for $\mathcal{P}_{\tau} = \pm 1 \ (= F(E, \pm 1))$
 - Irue spectrum will be $F(F, \mathcal{P}_{-}) = \frac{1+\mathcal{P}_{T}}{F}F(F, +1)$

Efficency and spectrum correction:

- Select events.
- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
 - ϵ(-1, E), ϵ(0, E), ϵ(+1, E)
 from fastsim.
- Spectrum (π channel only!)
 - Parametrise actual spectrum for $\mathcal{P}_{\tau} = \pm 1 \ (= F(E, \pm 1))$
 - If ue spectrum will be $F(E, \mathcal{P}_{\pi}) = \frac{1+\mathcal{P}_{\pi}}{2}F(E, +1)$

Efficency and spectrum correction:

- Select events.
- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
 - $\epsilon(-1, E), \epsilon(0, E), \epsilon(+1, E)$ from fastsim.
- Spectrum (π channel only!)
 - Parametrise actual spectrum for P_τ = ±1 (= F(E, ±1))
 True spectrum will be F(E, P_τ) = 1+P_τ/P_τF(E, +1) +

Efficency and spectrum correction:

- Select events.
- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
 - $\epsilon(-1, E), \epsilon(0, E), \epsilon(+1, E)$ from fastsim.
- Spectrum (*π* channel only!)
 - Parametrise actual spectrum for P_τ = ±1 (= F(E,±1))
 - True spectrum will be $F(E, \mathcal{P}_{\tau}) = \frac{1+\mathcal{P}_{\tau}}{2}F(E, +1) + \frac{1-\mathcal{P}_{\tau}}{2}F(E, -1)$

< 🗇 🕨

- Fit *P_τ*, with normalisation from cross-section determination.
- For π -channel (pointless for ρ due to $\gamma\gamma$)
 - Repeat fit with modified background.
 - Determine effect from $\Delta(M_{\tilde{\chi}_1^0})$ and $\Delta(M_{\tilde{r}_1})$ numerically.

 π channel: $\mathcal{P}_{\tau} = 93 \pm 6 \pm 5 \text{ (bgd)} \pm 3 \text{ (SUSYmasses)}\%$ ρ channel: $\mathcal{P}_{\tau} = 87.0 \pm 3.4\%$ True value: $\mathcal{P}_{\tau} = 89.6\%$

3

イロト イヨト イヨト イヨト

- Fit \mathcal{P}_{τ} , with normalisation from cross-section determination.
- For π -channel (pointless for ρ due to $\gamma\gamma$)
 - Repeat fit with modified background.
 - Determine effect from $\Delta(M_{\tilde{\chi}_1^0})$ and $\Delta(M_{\tilde{r}_1})$ numerically.

 π channel: $\mathcal{P}_{\tau} = 93 \pm 6 \pm 5 \text{ (bgd)} \pm 3 \text{ (SUSYmasses)}\%$ ρ channel: $\mathcal{P}_{\tau} = 87.0 \pm 3.4\%$ True value: $\mathcal{P}_{\tau} = 89.6\%$

ALCPG Albuquerque 23 / 26

э

- Fit *P_τ*, with normalisation from cross-section determination.
- For π-channel (pointless for ρ due to γγ)
 - Repeat fit with modified background.
 - Determine effect from $\Delta(M_{\tilde{\chi}_1^0})$ and $\Delta(M_{\tilde{\tau}_1})$ numerically.

 π channel: $\mathcal{P}_{\tau} = 93 \pm 6 \pm 5 \text{ (bgd)} \pm 3 \text{ (SUSYmasses)}\%$ ρ channel: $\mathcal{P}_{\tau} = 87.0 \pm 3.4\%$ True value: $\mathcal{P}_{\tau} = 89.6\%$

- Fit \mathcal{P}_{τ} , with normalisation from cross-section determination.
- For π-channel (pointless for ρ due to γγ)
 - Repeat fit with modified background.
 - Determine effect from $\Delta(M_{\tilde{\chi}_1^0})$ and $\Delta(M_{\tilde{\tau}_1})$ numerically.

 π channel: $\mathcal{P}_{\tau} = 93 \pm 6 \pm 5 \text{ (bgd)} \pm 3 \text{ (SUSYmasses)}\%$ ρ channel: $\mathcal{P}_{\tau} = 87.0 \pm 3.4\%$ True value: $\mathcal{P}_{\tau} = 89.6\%$

Detector, machine, and simulation

• Detector requirements:

- Low angle coverage.
- PID
- Resolution more than enough

Machine

- Can cope with background in RDR nominal.
- Low P: Probably no issue for tracking.
- But: more pairs at higher angles in BeamCal: worse low angle coverage (?)
- And: less lumi in the peak(?). Of-peak lumi is useless for end point.
- Demand to machine-guys: what is the Lumi on peak (ie. within ~ 100 MeV to nominal, not within 1 % !!!)

Simulation

- Much more SM (orders of magnitude for $\gamma\gamma) \rightarrow$ fastsim.
- dE/dx

Detector, machine, and simulation

• Detector requirements:

- Low angle coverage.
- PID
- Resolution more than enough

Machine

- Can cope with background in RDR nominal.
- Low P: Probably no issue for tracking.
- But: more pairs at higher angles in BeamCal: worse low angle coverage (?)
- And: less lumi in the peak(?). Of-peak lumi is useless for end point.
- Demand to machine-guys: what is the Lumi on peak (ie. within \sim 100 MeV to nominal, not within 1 % !!!)

Simulation

- Much more SM (orders of magnitude for $\gamma\gamma) \rightarrow$ fastsim.
- dE/dx

Detector, machine, and simulation

• Detector requirements:

- Low angle coverage.
- PID
- Resolution more than enough

Machine

- Can cope with background in RDR nominal.
- Low P: Probably no issue for tracking.
- But: more pairs at higher angles in BeamCal: worse low angle coverage (?)
- And: less lumi in the peak(?). Of-peak lumi is useless for end point.
- Demand to machine-guys: what is the Lumi on peak (ie. within \sim 100 MeV to nominal, not within 1 % !!!)

Simulation

Much more SM (orders of magnitude for γγ) → fastsim.
 dE/dx

(日)

Detector, machine, and simulation

• Detector requirements:

- Low angle coverage.
- PID
- Resolution more than enough

Machine

- Can cope with background in RDR nominal.
- Low P: Probably no issue for tracking.
- But: more pairs at higher angles in BeamCal: worse low angle coverage (?)
- And: less lumi in the peak(?). Of-peak lumi is useless for end point.
- Demand to machine-guys: what is the Lumi on peak (ie. within \sim 100 MeV to nominal, not within 1 % !!!)

Simulation

- Much more SM (orders of magnitude for $\gamma\gamma$) \rightarrow fastsim.
- dE/dx

ヘロンス 聞き スロンス ロン
Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background SUSY and SM included.
- Beam-background included: decreases signal by %5, but also decreases (physics) background by 15 %.
- $E_{\tau,max} = 41.96^{+0.15}_{-0.13} \text{ GeV}, M_{\tilde{\tau}_1} = 107.69^{+0.03}_{-0.06} \oplus 1.1\Delta(M_{\tilde{\chi}_1^0}) \text{ GeV}$
- $E_{\tau,max} = 151.2^{+1.9}_{-1.6} \text{ GeV}$, $M_{\tilde{\tau}_2} = 183^{+11}_{-5} \text{ GeV} \oplus 18\Delta(M_{\tilde{\chi}_1^0})$.
- $\Delta(\sigma_{\tilde{\tau}_1)=}$ 3.1 %, $\Delta(\sigma_{\tilde{\tau}_2)=}$ 4.2 %.
- $P_{\tau} = 93 \pm 6 \pm 5 \text{ (bgd)} \pm 3 \text{ (SUSYmasses)}\% (P_{\tau} = 87.0 \pm 3.4\%)$
- No mayor detector issues
- Need more channels, at different *E_{cms}* and polarisation.

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background SUSY and SM included.
- Beam-background included: decreases signal by %5, but also decreases (physics) background by 15 %.
- $E_{\tau,max} = 41.96^{+0.15}_{-0.13} \text{ GeV}, M_{\tilde{\tau}_1} = 107.69^{+0.03}_{-0.06} \oplus 1.1\Delta(M_{\tilde{\chi}_1^0}) \text{ GeV}$
- $E_{\tau,max} = 151.2^{+1.9}_{-1.6} \text{ GeV}$, $M_{\tilde{\tau}_2} = 183^{+11}_{-5} \text{ GeV} \oplus 18\Delta(M_{\tilde{\chi}_1^0})$.
- $\Delta(\sigma_{\tilde{\tau}_1)=}$ 3.1 %, $\Delta(\sigma_{\tilde{\tau}_2)=}$ 4.2 %.
- $P_{\tau} = 93 \pm 6 \pm 5 \text{ (bgd)} \pm 3 \text{ (SUSYmasses)}\% (P_{\tau} = 87.0 \pm 3.4\%)$
- No mayor detector issues
- Need more channels, at different *E_{cms}* and polarisation.

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background SUSY and SM included.
- Beam-background included: decreases signal by %5, but also decreases (physics) background by 15 %.

• $E_{\tau,max} = 41.96^{+0.15}_{-0.13} \text{ GeV}, M_{\tilde{\tau}_1} = 107.69^{+0.03}_{-0.06} \oplus 1.1\Delta(M_{\tilde{\chi}_2^0}) \text{ GeV}$

- $E_{\tau,max} = 151.2^{+1.9}_{-1.6} \text{ GeV}$, $M_{\tilde{\tau}_2} = 183^{+11}_{-5} \text{ GeV} \oplus 18\Delta(M_{\tilde{\chi}_1^0})$.
- $\Delta(\sigma_{\tilde{\tau}_1)=}$ 3.1 %, $\Delta(\sigma_{\tilde{\tau}_2)=}$ 4.2 %.
- $P_{\tau} = 93 \pm 6 \pm 5 \text{ (bgd)} \pm 3 \text{ (SUSYmasses)}\% (P_{\tau} = 87.0 \pm 3.4\%)$
- No mayor detector issues
- Need more channels, at different *E_{cms}* and polarisation.

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background SUSY and SM included.
- Beam-background included: decreases signal by %5, but also decreases (physics) background by 15 %.

•
$$E_{\tau,max} = 41.96^{+0.15}_{-0.13} \text{ GeV}, M_{\tilde{\tau}_1} = 107.69^{+0.03}_{-0.06} \oplus 1.1\Delta(M_{\tilde{\chi}_1^0}) \text{ GeV}$$

- $E_{\tau,max} = 151.2^{+1.9}_{-1.6} \text{ GeV}$, $M_{\tilde{\tau}_2} = 183^{+11}_{-5} \text{ GeV} \oplus 18\Delta(M_{\tilde{\chi}^0_1})$.
- $\Delta(\sigma_{\tilde{\tau}_1)=}$ 3.1 %, $\Delta(\sigma_{\tilde{\tau}_2)=}$ 4.2 %.
- $P_{\tau} = 93 \pm 6 \pm 5 \text{ (bgd)} \pm 3 \text{ (SUSYmasses)}\% (P_{\tau} = 87.0 \pm 3.4\%)$
- No mayor detector issues
- Need more channels, at different *E_{cms}* and polarisation.

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background SUSY and SM included.
- Beam-background included: decreases signal by %5, but also decreases (physics) background by 15 %.

•
$$E_{\tau,max} = 41.96^{+0.15}_{-0.13} \text{ GeV}, M_{\tilde{\tau}_1} = 107.69^{+0.03}_{-0.06} \oplus 1.1\Delta(M_{\tilde{\chi}_1^0}) \text{ GeV}$$

- $E_{\tau,max} = 151.2^{+1.9}_{-1.6} \text{ GeV}$, $M_{\tilde{\tau}_2} = 183^{+11}_{-5} \text{ GeV} \oplus 18\Delta(M_{\tilde{\chi}_1^0})$.
- $\Delta(\sigma_{\tilde{\tau}_1)=}$ 3.1 %, $\Delta(\sigma_{\tilde{\tau}_2)=}$ 4.2 %.
- $P_{\tau} = 93 \pm 6 \pm 5 \text{ (bgd)} \pm 3 \text{ (SUSYmasses)}\% (P_{\tau} = 87.0 \pm 3.4\%)$
- No mayor detector issues
- Need more channels, at different E_{cms} and polarisation.

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background SUSY and SM included.
- Beam-background included: decreases signal by %5, but also decreases (physics) background by 15 %.

•
$$E_{\tau,max} = 41.96^{+0.15}_{-0.13} \text{ GeV}, M_{\tilde{\tau}_1} = 107.69^{+0.03}_{-0.06} \oplus 1.1\Delta(M_{\tilde{\chi}_1^0}) \text{ GeV}$$

- $E_{\tau,max} = 151.2^{+1.9}_{-1.6} \text{ GeV}$, $M_{\tilde{\tau}_2} = 183^{+11}_{-5} \text{ GeV} \oplus 18\Delta(M_{\tilde{\chi}_1^0})$.
- $\Delta(\sigma_{\tilde{\tau}_1)=}$ 3.1 %, $\Delta(\sigma_{\tilde{\tau}_2)=}$ 4.2 %.
- $P_{\tau} = 93 \pm 6 \pm 5 \text{ (bgd)} \pm 3 \text{ (SUSYmasses)}\% (P_{\tau} = 87.0 \pm 3.4\%)$
- No mayor detector issues
- Need more channels, at different *E_{cms}* and polarisation.

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background SUSY and SM included.
- Beam-background included: decreases signal by %5, but also decreases (physics) background by 15 %.

•
$$E_{\tau,max} = 41.96^{+0.15}_{-0.13} \text{ GeV}, M_{\tilde{\tau}_1} = 107.69^{+0.03}_{-0.06} \oplus 1.1\Delta(M_{\tilde{\chi}_1^0}) \text{ GeV}$$

- $E_{\tau,max} = 151.2^{+1.9}_{-1.6} \text{ GeV}$, $M_{\tilde{\tau}_2} = 183^{+11}_{-5} \text{ GeV} \oplus 18\Delta(M_{\tilde{\chi}_1^0})$.
- $\Delta(\sigma_{\tilde{\tau}_1)=}$ 3.1 %, $\Delta(\sigma_{\tilde{\tau}_2)=}$ 4.2 %.
- $P_{\tau} = 93 \pm 6 \pm 5 \text{ (bgd)} \pm 3 \text{ (SUSYmasses)}\% (P_{\tau} = 87.0 \pm 3.4\%)$
- No mayor detector issues
- Need more channels, at different *E_{cms}* and polarisation.

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background SUSY and SM included.
- Beam-background included: decreases signal by %5, but also decreases (physics) background by 15 %.

•
$$E_{\tau,max} = 41.96^{+0.15}_{-0.13} \text{ GeV}, M_{\tilde{\tau}_1} = 107.69^{+0.03}_{-0.06} \oplus 1.1\Delta(M_{\tilde{\chi}_1^0}) \text{ GeV}$$

- $E_{\tau,max} = 151.2^{+1.9}_{-1.6} \text{ GeV}$, $M_{\tilde{\tau}_2} = 183^{+11}_{-5} \text{ GeV} \oplus 18\Delta(M_{\tilde{\chi}_1^0})$.
- $\Delta(\sigma_{\tilde{\tau}_1)=}$ 3.1 %, $\Delta(\sigma_{\tilde{\tau}_2)=}$ 4.2 %.
- $P_{\tau} = 93 \pm 6 \pm 5 \text{ (bgd)} \pm 3 \text{ (SUSYmasses)}\% (P_{\tau} = 87.0 \pm 3.4\%)$
- No mayor detector issues
- Need more channels, at different *E_{cms}* and polarisation.

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background SUSY and SM included.
- Beam-background included: decreases signal by %5, but also decreases (physics) background by 15 %.

•
$$E_{\tau,max} = 41.96^{+0.15}_{-0.13} \text{ GeV}, M_{\tilde{\tau}_1} = 107.69^{+0.03}_{-0.06} \oplus 1.1\Delta(M_{\tilde{\chi}_1^0}) \text{ GeV}$$

- $E_{\tau,max} = 151.2^{+1.9}_{-1.6} \text{ GeV}$, $M_{\tilde{\tau}_2} = 183^{+11}_{-5} \text{ GeV} \oplus 18\Delta(M_{\tilde{\chi}_1^0})$.
- $\Delta(\sigma_{\tilde{\tau}_1)=}$ 3.1 %, $\Delta(\sigma_{\tilde{\tau}_2)=}$ 4.2 %.
- $P_{\tau} = 93 \pm 6 \pm 5 \text{ (bgd)} \pm 3 \text{ (SUSYmasses)}\% (P_{\tau} = 87.0 \pm 3.4\%)$
- No mayor detector issues
- Need more channels, at different *E_{cms}* and polarisation.

... and outlook

• We will continue to study more aspects of SPS1a'.

- other channels: $\tilde{\mu}$ -, and \tilde{e} -pairs, $\tilde{\tau}_1$, bosinos,...
- varying *E_{cms}*
- Need (not necessarily very exact) theory:
 - How does aspects we measure hang together ?
 - Ie. we need the analytical formulae for what is generated.
- More full and fast simulation:
 - Full sim of the full SPS1a'
 - Fastsim for $\gamma\gamma$

This will be fun !

Mikael Berggren (DESY)

Prospects for the study of $\tilde{\tau}$:s in SPS1a' in ILI

ALCPG Albuquerque

26 / 26

... and outlook

- We will continue to study more aspects of SPS1a'.
 - other channels: $\tilde{\mu}$ -, and \tilde{e} -pairs, $\tilde{\tau}_1$, bosinos,...
 - varying *E_{cms}*
- Need (not necessarily very exact) theory:
 - How does aspects we measure hang together ?
 - le. we need the analytical formulae for what is generated.
- More full and fast simulation:
 - Full sim of the full SPS1a'
 - Fastsim for $\gamma\gamma$

This will be fun !

Mikael Berggren (DESY)

Prospects for the study of $\tilde{\tau}$:s in SPS1a' in ILI

ALCPG Albuquerque

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

26 / 26

... and outlook

- We will continue to study more aspects of SPS1a'.
 - other channels: $\tilde{\mu}$ -, and \tilde{e} -pairs, $\tilde{\tau}_1$, bosinos,...
 - varying *E_{cms}*
- Need (not necessarily very exact) theory:
 - How does aspects we measure hang together ?
 - le. we need the analytical formulae for what is generated.
- More full and fast simulation:
 - Full sim of the full SPS1a'
 - Fastsim for $\gamma\gamma$

This will be fun !

... and outlook

- We will continue to study more aspects of SPS1a'.
 - other channels: $\tilde{\mu}$ -, and \tilde{e} -pairs, $\tilde{\tau}_1$, bosinos,...
 - varying *E_{cms}*
- Need (not necessarily very exact) theory:
 - How does aspects we measure hang together ?
 - le. we need the analytical formulae for what is generated.
- More full and fast simulation:
 - Full sim of the full SPS1a'
 - Fastsim for $\gamma\gamma$

This will be fun !

Mikael Berggren (DESY)

Prospects for the study of $\tilde{\tau}$:s in SPS1a' in ILI

ALCPG Albuquerque 26 / 26