Prospects for the study of $\tilde{\tau}: s$ in SPS1a' in ILD

Mikael Berggren ${ }^{1}$
${ }^{1}$ DESY, Hamburg

ALCPG UNM, Albuquerque, Sept 2009

Outline

(1) Introduction
(2) SPS1a'
(3) The $\tilde{\tau}$ channel
(4) Analysis

- Overview
- Suppress beam-background
- $\gamma \gamma$ suppression
- Finding τ :s
- Topology selection
- End-point and cross-section
- The τ Polarisation
(5) Comments
(6) Conclusions

Introduction

What can be done if SUSY exists, and is "next to LEP", and we use a real detector?

- Study SPS1a'
- Weak-scale parameters with SPheno
- Whizard for event simulation (Produced at DESY)
- GuineaPig for beam-background
- DESY mass-production for both SUSY and SM:
- Full simulation: ILD_00 in Mokka
- Reconstruction using Marlin
- Study τ channels

People involved

- Olga Stempel, Peter Schade, J. List, P. Bechtle, M.B.

SPS1a'

Pure mSUGRA model:
$M_{1 / 2}=250 \mathrm{GeV}, M_{0}=70 \mathrm{GeV}, A_{0}=-300 \mathrm{GeV}$, $\tan \beta=10, \operatorname{sign}(\mu)=+1$

Just outside what is excluded by LEP and low-energy observations. Compatible with WMAP, with $\tilde{\chi}_{1}^{0}$ Dark Matter.
Close to "best fit" to present data.

- All sleptons available.
- No squarks.
- Lighter bosinos, up to $\tilde{\chi}_{3}^{0}\left(\right.$ in $\left.\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{3}^{0}\right)$

Features of $\tilde{\tau}: s$ in SPS1a'

- In SPS1a', the $\tilde{\tau}_{1}$ is the NLSP.
- $M_{\tilde{\tau}_{1}}=107.9 \mathrm{GeV}, M_{\tilde{\tau}_{2}}=194.9 \mathrm{GeV}, M_{\tilde{\chi}_{1}^{0}}=97.7 \mathrm{GeV}$
- $E_{\tilde{\tau}_{1}, \text { min }}=2.6 \mathrm{GeV}, E_{\tilde{\tau}_{1}, \max }=42.5 \mathrm{GeV}: \gamma \gamma$ background .
- $E_{\tilde{\tau}_{2}, \min }=35.0 \mathrm{GeV}, E_{\tilde{\tau}_{2}, \max }=152.2 \mathrm{GeV}: W W \rightarrow I \nu I /$ background.
- Co-annihilation important for Dark Matter: $M_{\tilde{\tau}_{1}}$ important. - The $\tilde{\tau}$ mass-eigen states \neq chiral-eigen states: $\tilde{\tau}$-mixing

Features of $\tilde{\tau}: s$ in SPS1a'

- In SPS1a', the $\tilde{\tau}_{1}$ is the NLSP.
- $M_{\tilde{\tau}_{1}}=107.9 \mathrm{GeV}, M_{\tilde{\tau}_{2}}=194.9 \mathrm{GeV}, M_{\tilde{\chi}_{1}^{0}}=97.7 \mathrm{GeV}$
- $E_{\tilde{\tau}_{1}, \min }=2.6 \mathrm{GeV}, E_{\tilde{\tau}_{1}, \max }=42.5 \mathrm{GeV}: \gamma \gamma$ background.
- $E_{\tilde{\tau}_{2}, \min }=35.0 \mathrm{GeV}, E_{\tilde{\tau}_{2}, \max }=152.2 \mathrm{GeV}: W W \rightarrow I \nu I /$ background.
- Co-annihilation important for Dark Matter: $M_{\tilde{\tau}_{1}}$ important.
- The $\tilde{\tau}$ mass-eigen states \neq chiral-eigen states:

Features of $\tilde{\tau}: s$ in SPS1a'

- In SPS1a', the $\tilde{\tau}_{1}$ is the NLSP.
- $M_{\tilde{\tau}_{1}}=107.9 \mathrm{GeV}, M_{\tilde{\tau}_{2}}=194.9 \mathrm{GeV}, M_{\tilde{\chi}_{1}^{0}}=97.7 \mathrm{GeV}$
- $E_{\tilde{\tau}_{1}, \min }=2.6 \mathrm{GeV}, E_{\tilde{\tau}_{1}, \max }=42.5 \mathrm{GeV}: \gamma \gamma$ background .
- $E_{\tilde{\tau}_{2}, \min }=35.0 \mathrm{GeV}, E_{\tilde{\tau}_{2}, \max }=152.2 \mathrm{GeV}: W W \rightarrow I \nu I / \nu$ background.
- Co-annihilation important for Dark Matter: $M_{\tilde{\tau}_{1}}$ important.
- The $\tilde{\tau}$ mass-eigen states \neq chiral-eigen states: $\tilde{\tau}$-mixing
- With $M_{\tilde{\mu}_{\llcorner }}$and $M_{\tilde{\mu}_{\mathrm{R}}}$, a measurement of $\theta_{\text {mix }}$ gives $A_{\tilde{\tau}}-\mu \tan \beta$.
- Cross-section depends on $\theta_{\text {mix }}$ and beam-polarisation.
- τ polarisation depends on $\theta_{\text {mix }}$ and on $\tilde{\chi}_{1}^{0}$-mixing.

Features of $\tilde{\tau}: s$ in SPS1a'

- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays $(\mathrm{BR}(\mathrm{X} \rightarrow \tilde{\tau})>50 \%) \rightarrow$ SUSY is background to SUSY.

Features of $\tilde{\tau}: s$ in SPS1a'

- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays $(\mathrm{BR}(\mathrm{X} \rightarrow \tilde{\tau})>50 \%) \rightarrow$ SUSY is background to SUSY.
- Note:
- For pol=(-1,1): $\sigma\left(\tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0}\right)$ and $\sigma\left(\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}\right)=$several hundred fb.
- For pol=(1,-1): $\sigma\left(\tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0}\right)$ and $\sigma\left(\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}\right) \approx 0$.
- \rightarrow Use Polarisation $=(0.8,-0.3)$

Extracting the $\tilde{\tau}$ properties

Mass from decay kinematics:

- $M_{\tilde{\tau}}$ from $M_{\tilde{\chi}_{1}^{0}}$ and end-point of spectrum $=E_{\tau, \max }$.
- Need to measure end-point of spectrum.
- In principle: $M_{\tilde{\chi}_{1}^{0}}$ turn-over of spectrum $=P_{\tau, \min }$, but hidden in $\gamma \gamma$ background.
- Must get $M_{\tilde{\chi}_{1}^{0}}$ from other sources. ($\tilde{\mu}$, ẽ, not yet done)

Mass from cross-section:

- $\sigma_{\tilde{\tau}}=A\left(\theta_{\tilde{\tau}}, \mathcal{P}_{\text {beam }}\right) \times \beta^{3} / s$, so
- $M_{\tilde{\tau}}=E_{\text {beam }} \sqrt{1-(\sigma s / A)^{2 / 3}}$: no $M_{\tilde{\chi}_{1}^{0}}$!

Polarisation from decay spectra:

- P from spectrum for exclusive decay-mode(s). Here: $\tau \rightarrow \pi^{+-} \nu_{\tau}$ and $\tau \rightarrow \rho^{+-} \nu_{\tau} \rightarrow \pi^{+-} \pi^{0} \nu_{\tau}$

Overview of Analysis

- Common to all aspects:
- Reduce beam-beam background
- Reduce $\gamma \gamma$ background
- Find τ candidates
- Select $\tilde{\tau}$-like topology
- Then specialise:
- For mass: select events close to end point to reduce $\gamma \gamma$ background. Different for $\tilde{\tau}_{1}$ and $\tilde{\tau}_{2}$.
- For polarisation: Select decay mode \rightarrow PID.

Beam-background

Simulation method

- Generate 1000 bunch-crossings with GuineaPig.
- Add simulated and reconstructed beam-background only events on beam-background free, fully simulated and reconstructed physics events \rightarrow under-estimate pattern rec. problems.

Beam-background

- Most beam-background tracks seen in the tracker are low P_{T}

... and demand associated TPC hits for charged.

Beam-background

- Most beam-background tracks seen in the tracker are low P_{T}
- Reject by : $E>500 \mathrm{MeV}$... and demand associated TPC hits for charged.

Beam-background

- Most beam-background tracks seen in the tracker are low P_{T}
- .. or fakes.
- Reject by : $E>500 \mathrm{MeV}$ - ... and demand associated TPC hits for charged.

Beam-background

- Most beam-background tracks seen in the tracker are low P_{T}
- .. or fakes.
- Reject by : $E>500 \mathrm{MeV}$... and demand associated TPC hits for charged.
log10(Particles.E) $\{$ Particles. $\mathrm{E}<100 \& \&$ Particles. $q==0\}$

Beam-background

- Most beam-background tracks seen in the tracker are low P_{T}
- .. or fakes.
- Reject by : $E>500 \mathrm{MeV}$

Beam-background

- Most beam-background tracks seen in the tracker are low P_{T}
- .. or fakes.
- Reject by: $E>500 \mathrm{MeV}$
- ... and demand associated TPC hits for charged.

$\gamma \gamma$ suppression

Veto beam-remnant electrons:
BeamCal
ϕ_{p} miss not in the direction of
the incoming beam-pipe.
Visible system now almost
back-to-back in transversal view

$\gamma \gamma$ suppression

Veto beam-remnant electrons:

- no significant activity in the

BeamCal

- ϕ_{p} miss not in the direction of
the incoming beam-pipe.
Visible system now almost
back-to-back in transversal view

$\gamma \gamma$ suppression

Veto beam-remnant electrons:

- no significant activity in the BeamCal
- ϕ_{p} miss not in the direction of the incoming beam-pipe.
Visible system now almost
back-to-back in transversal view

$\gamma \gamma$ suppression

Veto beam-remnant electrons:

- no significant activity in the BeamCal
- ϕ_{p} miss not in the direction of the incoming beam-pipe.
Visible system now almost back-to-back in transversal view
- Correlated cut in ρ and $\theta_{\text {acoo }}$: $\rho>2.7 \sin \theta_{\text {acop }}+1.8$.

$\gamma \gamma$ suppression

Veto beam-remnant electrons:

- no significant activity in the BeamCal
- ϕ_{p} miss not in the direction of the incoming beam-pipe.
Visible system now almost back-to-back in transversal view
- Correlated cut in ρ and $\theta_{\text {acoo }}$: $\rho>2.7 \sin \theta_{\text {acop }}+1.8$.

$\gamma \gamma$ suppression

Veto beam-remnant electrons:

- no significant activity in the BeamCal
- ϕ_{p} miss not in the direction of the incoming beam-pipe.
Visible system now almost back-to-back in transversal view
- Correlated cut in ρ and $\theta_{\text {acoo }}$: $\rho>2.7 \sin \theta_{\text {acop }}+1.8$.

Finding $\tau: S$

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ-finder:

Additional options not yet exploited: Special treatment of leptons, neutral hadrons.

Finding $\tau: S$

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ-finder:
(1) Test all possible ways to group the charged tracks in the event in collections with $M<2 \mathrm{GeV} / c^{2}$.
(2) Prefer the grouping giving the lowest number of groups.
(3) If more than one possible, use the one with lowest ΣM.
(4) End when no smaller number of groups possible.
(5) Then add any neutrals to the groups, always selecting the situation giving the lowest mass
(6) If the lowest mass is $>2 \mathrm{GeV} / c^{2}$, leave the neutral to the "Rest-of-event" group
Additional options not yet exploited: Special treatment of leptons, neutral hadrons.

Finding $\tau: S$

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ-finder:
(1) Test all possible ways to group the charged tracks in the event in collections with $M<2 \mathrm{GeV} / c^{2}$.
(2) Prefer the grouping giving the lowest number of groups.
(3) If more than one possible, use the one with lowest ΣM.
(4) End when no smaller number of groups possible.
(5) Then add any neutrals to the groups, always selecting the situation giving the lowest mass
(6) If the lowest mass is $>2 \mathrm{GeV} / c^{2}$, leave the neutral to the "Rest-of-event" group
Additional options not yet exploited: Special treatment of leptons, neutral hadrons.

Finding $\tau: S$

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ-finder:
(1) Test all possible ways to group the charged tracks in the event in collections with $M<2 \mathrm{GeV} / c^{2}$.
(2) Prefer the grouping giving the lowest number of groups.
(3) If more than one possible, use the one with lowest ΣM.
(4) End when no smaller number of groups possible.
(5) Then add any neutrals to the groups, always selecting the situation giving the lowest mass
(6) If the lowest mass is $>2 \mathrm{GeV} / c^{2}$, leave the neutral to the "Rest-of-event" group
Additional options not yet exploited: Special treatment of leptons, neutral hadrons.

Finding τ :S

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ-finder:
(0) Test all possible ways to group the charged tracks in the event in collections with $M<2 \mathrm{GeV} / c^{2}$.
(2) Prefer the grouping giving the lowest number of groups.
(3) If more than one possible, use the one with lowest ΣM.
(9) End when no smaller number of groups possible.
(0. Then add any neutrals to the groups, always selecting the situation giving the lowest mass
(0) If the lowest mass is $>2 \mathrm{GeV} / \mathrm{c}^{2}$, leave the neutral to the "Rest-of-event" group
Additional options not yet exploited: Special treatment of leptons, neutral hadrons.

Finding $\tau: S$

Performs better than Durham forced to two jets already without background:

BLUE: Durham, RED: DELPHI

Topology selection

$\tilde{\tau}$ properties:

- Only two τ :s in the final state.
- Large missing energy and momentum.
- High acollinearity, with modest correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- Exactly two jets.
- Vanishing total charge

- No particle with momentum above $180 \mathrm{GeV} / \mathrm{c}$ in the event.

Topology selection

$\tilde{\tau}$ properties:

- Only two τ :s in the final state.
- Large missing energy and momentum.
- High acollinearity, with modest correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.

Select this by:

- Exactly two jets.
- $N_{c h}<10$
- Vanishing total charge.
- Charge of each jet $= \pm 1$,
- $M_{j e t}<2.5 \mathrm{GeV} / \mathrm{c}^{2}$,
- $E_{\text {vis }}<300 \mathrm{GeV}$,
- $M_{\text {miss }}>250 \mathrm{GeV} / \mathrm{c}^{2}$,
- No particle with momentum above $180 \mathrm{GeV} / \mathrm{c}$ in the event.

End-point and cross-section

Additional cuts against $\gamma \gamma$:

- $\left|\cos \theta_{\text {missing momentum }}\right|<0.8$
- Low fraction of "Rest-of-Event" energy at low angles.
- Good agreement $p_{\text {track }}-E_{\text {calo }}$

From now on: Different cuts for $\tilde{\tau}_{1}\left(\gamma \gamma\right.$ background), and $\tilde{\tau}_{2}(W W$ background).

$\tilde{\tau}_{1}$ End-point and cross-section

Against $\gamma \gamma$:

- $E_{\text {vis }}<120 \mathrm{GeV}$,
- $\left|\cos \theta_{j e t}\right|<0.9$ for both jets,
- $\theta_{\text {acop }}>85^{\circ}$,
- $M_{\text {vis }}>20 \mathrm{GeV} / c^{2}$.

Against other, heavier, SUSY particles:

- $\left(E_{j e t 1}+E_{j e t 2}\right) \sin \theta_{a c o p}<$ 30 GeV .

$N_{\text {sign }}=9800$ (Efficiency 14.2%)
$N_{b c k, S M}=390, N_{\text {bck }, S U S Y}=1020$.

$\tilde{\tau}_{1}$ End-point and cross-section

Against $\gamma \gamma$:

- $E_{\text {vis }}<120 \mathrm{GeV}$,
- $\left|\cos \theta_{j e t}\right|<0.9$ for both jets,
- $\theta_{\text {acop }}>85^{\circ}$,
- $M_{\text {vis }}>20 \mathrm{GeV} / c^{2}$.

Against other, heavier, SUSY particles:

- $\left(E_{j e t 1}+E_{j e t 2}\right) \sin \theta_{\text {acop }}<$ 30 GeV .

[^0]
$\tilde{\tau}_{1}$ End-point and cross-section

Against $\gamma \gamma$:

- $E_{\text {vis }}<120 \mathrm{GeV}$,
- $\left|\cos \theta_{j e t}\right|<0.9$ for both jets,
- $\theta_{\text {acop }}>85^{\circ}$,
- $M_{\text {vis }}>20 \mathrm{GeV} / c^{2}$.

Against other, heavier, SUSY particles:

- $\left(E_{j e t 1}+E_{j e t 2}\right) \sin \theta_{\text {acop }}<$ 30 GeV .

$N_{\text {sign }}=9800$ (Efficiency 14.2 \%)
$N_{b c k, S M}=390, N_{b c k, S U S Y}=1020$.

$\tilde{\tau}_{2}$ End-point and cross-section

Against $\gamma \gamma$:

- $E_{\text {vis }}>50 \mathrm{GeV}$.
- $M_{\text {vis }}>20 \mathrm{GeV} / \mathrm{c}^{2}$.
- $\theta_{\text {acop }}<155^{\circ}$.

Against $W W \rightarrow I \nu / \nu$:

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of $\mathrm{f}\left(q_{j e t 1} \cos \theta_{j e t 1}, q_{j e t 2} \cos \theta_{j e t 2}\right)$

$N_{\text {sign }}=2000$ (Efficiency 22.4%) $N_{\text {bck SMA }}=1700, N_{\text {bok }}$ susy $=460$

$\tilde{\tau}_{2}$ End-point and cross-section

Against $\gamma \gamma$:

- $E_{\text {vis }}>50 \mathrm{GeV}$.
- $M_{\text {vis }}>20 \mathrm{GeV} / \mathrm{c}^{2}$.
- $\theta_{\text {acop }}<155^{\circ}$.

Against $W W \rightarrow \mid \nu l_{\nu}$:

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of $\mathrm{f}\left(q_{j e t 1} \cos \theta_{j e t 1}, q_{j e t 2} \cos \theta_{j e t 2}\right)$

$N_{\text {sign }}=2000$ (Efficiency 22.4%)
$N_{\text {bck SMA }}=1700, N_{\text {bok }}$ susy $=460$

$\tilde{\tau}_{2}$ End-point and cross-section

Against $\gamma \gamma$:

- $E_{\text {vis }}>50 \mathrm{GeV}$.
- $M_{\text {vis }}>20 \mathrm{GeV} / c^{2}$.
- $\theta_{\text {acop }}<155^{\circ}$.

Against $W W \rightarrow I \nu / \nu$:

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of $\mathrm{f}\left(q_{j e t 1} \cos \theta_{j e t 1}, q_{j e t 2} \cos \theta_{j e t 2}\right)$

$\tilde{\tau}_{2}$ End-point and cross-section

Against $\gamma \gamma$:

- $E_{\text {vis }}>50 \mathrm{GeV}$.
- $M_{\text {vis }}>20 \mathrm{GeV} / c^{2}$.
- $\theta_{\text {acop }}<155^{\circ}$.

Against $W W \rightarrow I \nu / \nu$:

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of $\mathrm{f}\left(q_{j e t 1} \cos \theta_{j e t 1}, q_{j e t 2} \cos \theta_{j e t 2}\right)$

$N_{\text {sign }}=2000$ (Efficiency 22.4 \%)
$N_{b c k, S M}=1700, N_{b c k, S U S Y}=460$.

Fitting the $\tilde{\tau}_{1}$ mass: Endpoint

- Only the upper end-point is relevant.
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation):
- MINUIT, ML fit, with MINOS+HESSE.

Fitting the $\tilde{\tau}_{1}$ mass: Endpoint

- Only the upper end-point is relevant.
- Region above 45 GeV is signal free. Fit exponential.
- Fit line to (data-background fit extrapolation):
- MINUIT, ML fit, with MINOS+HESSE.
$E_{\tau, \max }=41.96_{-0.13}^{+0.15} \mathrm{GeV}$ (true
value 42.54 GeV)
$M_{\tilde{\tau}_{1}}=107.69_{-0.06}^{+0.03} \mathrm{GeV}$.

NB: $d M_{\tilde{\tau}} / d M_{\tilde{\chi}_{1}^{0}} \approx 1.1$: Even if $\Delta\left(M_{\tilde{\chi}_{1}^{0}}\right) \approx 100 \mathrm{MeV}$ the error from $M_{\tilde{\chi}_{1}^{0}}$ largely dominates.

Fitting the $\tilde{\tau}_{2}$ mass: Endpoint

- Only the upper end-point is relevant.
- Region above 45 GeV is free of SUSY background. Fit exponential SM simulation.
- Fit line to (data-background fit extrapolation):
- MINUIT, ML fit, with MINOS+HESSE.

Fitting the $\tilde{\tau}_{2}$ mass: Endpoint

- Only the upper end-point is relevant.
- Region above 45 GeV is free of SUSY background. Fit exponential SM simulation.
- Fit line to (data-background fit extrapolation):
- MINUIT, ML fit, with MINOS+HESSE.
$E_{\tau, \max }=151.2_{-1.6}^{+1.9} \mathrm{GeV}$ (true value 152.2 GeV)

$M_{\tilde{\tau}_{2}}=183_{-5}^{+11} \mathrm{GeV}$.
NB: $d M_{\tilde{\tau}} / d M_{\tilde{\chi}_{1}^{0}} \approx 18$: Even if $\Delta\left(M_{\tilde{\chi}_{1}^{0}}\right) \approx 500 \mathrm{MeV}$ the error from the endpoint dominates.

Fitting the $\tilde{\tau}_{1}$ mass: Cross-section

- Main background is SM: well known.
- Some SUSY background: poorly known.
- Select region where SUSY bck is as low as possible.

Fitting the $\tilde{\tau}_{1}$ mass: Cross-section

- Main background is SM: well known.
- Some SUSY background: poorly known.
- Select region where SUSY bck is as low as possible.
$\Delta\left(N_{\text {signal }}\right) / N_{\text {signal }}=3.1 \%$
$\Delta\left(M_{\tilde{\tau}_{1}}\right) / M_{\tilde{\tau}_{1}}=$
$(\Delta(\sigma) / \sigma)\left(\beta^{2}\right) / 3\left(1-\beta^{2}\right)=2.1 \%$, ie.
$\Delta\left(M_{\tilde{\tau}_{1}}\right)=3.2 \mathrm{GeV} / c^{2}$

Fitting the $\tilde{\tau}_{2}$ mass: Cross-section

- Main background is SM: well known.
- Hardly any SUSY background beyond $\tilde{\tau}_{1}$ endpoint.
- Select this region.

Fitting the $\tilde{\tau}_{2}$ mass: Cross-section

- Main background is SM: well known.
- Hardly any SUSY background beyond $\tilde{\tau}_{1}$ endpoint.
- Select this region.
$\Delta\left(N_{\text {signal }}\right) / N_{\text {signal }}=4.2 \%$
$\Delta\left(M_{\tilde{\tau}_{2}}\right) / M_{\tilde{\tau}_{2}}=$
$(\Delta(\sigma) / \sigma)\left(\beta^{2}\right) / 3\left(1-\beta^{2}\right)=2.4 \%$, ie.
$\Delta\left(M_{\tilde{\tau}_{2}}\right)=3.6 \mathrm{GeV} / c^{2}$
End-point + Cros-section
$\rightarrow \Delta\left(M_{\tilde{\chi}_{1}^{0}}\right)=1.7 \mathrm{GeV} / c^{2}$

τ Polarisation

- $\tilde{\tau}$ L-R mix $\otimes \tilde{\chi}_{1}^{0}$ gaugino-higgsino mix $\rightarrow \tau$ Polarisation
- Due to non-existance of ν_{R}, τ polarisation reflects in τ decay-product spectrum.

τ Polarisation

- $\tilde{\tau}$ L-R mix $\otimes \tilde{\chi}_{1}^{0}$ gaugino-higgsino mix $\rightarrow \tau$ Polarisation
- Due to non-existance of ν_{R}, τ polarisation reflects in τ decay-product spectrum.

If $\tau \rightarrow \nu+$ (pseudo)scalar:

- ν mostly backward/forward for τ_{R} / τ_{L}
- \rightarrow Hard visible spectum: τ_{R}, Soft visible spectum: τ_{L}.
- Absoulte energy counts: Need to correct for ISR and beam-strahlung!

```
                If }\tau->\nu+\mathrm{ Vector
                    0 }\nu+\textrm{V}\mathrm{ is L/R if vector is T/L
- Decay products along/perp to
axis for L/T
```


need to correct for ISR and beam-strahlung!

For both: need to get $\epsilon\left(E_{\text {vis }}\right)$ and background from $M C$.

τ Polarisation

- $\tilde{\tau}$ L-R mix $\otimes \tilde{\chi}_{1}^{0}$ gaugino-higgsino mix $\rightarrow \tau$ Polarisation
- Due to non-existance of ν_{R}, τ polarisation reflects in τ decay-product spectrum.

If $\tau \rightarrow \nu+$ (pseudo)scalar:

- ν mostly backward/forward for τ_{R} / τ_{L}
- \rightarrow Hard visible spectum: τ_{R}, Soft visible spectum: τ_{L}.
- Absoulte energy counts: Need to correct for ISR and beam-strahlung!

If $\tau \rightarrow \nu+$ Vector :

- $\nu+\mathrm{V}$ is L / R if vector is T / L
- V mostly L for τ_{R}, T for τ_{L}.
- Decay products along/perp to axis for L/T
- le. $E_{1} / E_{\text {tot }}$ banana: τ_{R}, bell: τ_{L}
- Relative energy counts: No need to correct for ISR and beam-strahlung!

τ Polarisation

- $\tilde{\tau}$ L-R mix $\otimes \tilde{\chi}_{1}^{0}$ gaugino-higgsino mix $\rightarrow \tau$ Polarisation
- Due to non-existance of ν_{R}, τ polarisation reflects in τ decay-product spectrum.

If $\tau \rightarrow \nu+$ (pseudo)scalar:

- ν mostly backward/forward for τ_{R} / τ_{L}
- \rightarrow Hard visible spectum: τ_{R}, Soft visible spectum: τ_{L}.
- Absoulte energy counts: Need to correct for ISR and beam-strahlung!

If $\tau \rightarrow \nu+$ Vector :

- $\nu+\mathrm{V}$ is L / R if vector is T / L
- V mostly L for τ_{R}, T for τ_{L}.
- Decay products along/perp to axis for L/T
- le. $E_{1} / E_{\text {tot }}$ banana: τ_{R}, bell: τ_{L}
- Relative energy counts: No need to correct for ISR and beam-strahlung!
For both: need to get $\epsilon\left(E_{\text {vis }}\right)$ and background from MC.

τ Polarisation

- The events should pass the topology selection and anti- $\gamma \gamma$ cut.
- $E_{\text {vis }}<90 \mathrm{GeV}$.
- No jet with $E>60 \mathrm{GeV}(43 \mathrm{GeV}$ for ρ channel)

τ Polarisation

- The events should pass the topology selection and anti- $\gamma \gamma$ cut.
- $E_{\text {vis }}<90 \mathrm{GeV}$.
- No jet with $E>60 \mathrm{GeV}(43 \mathrm{GeV}$ for ρ channel)

Extract the $\tau \rightarrow \pi^{+-} \nu_{\tau}$ signal.
Extract the $\tau \rightarrow \rho^{+-} \nu_{\tau}$ signal.

- At least one jets should contain a single particle.
- The particle should have a π-id (both calorimetric and $d E / d x$).
- Also kills remaining $\gamma \gamma$
- At least one jets should contain one charged partic le
\square close to $\pi^{ \pm} \rightarrow$ looks like an $e^{ \pm}$

τ Polarisation

- The events should pass the topology selection and anti- $\gamma \gamma$ cut.
- $E_{\text {vis }}<90 \mathrm{GeV}$.
- No jet with $E>60 \mathrm{GeV}(43 \mathrm{GeV}$ for ρ channel)

Extract the $\tau \rightarrow \pi^{+-} \nu_{\tau}$ signal.

- At least one jets should contain a single particle.
- The particle should have a π-id (both calorimetric and $d E / d x$).
- Also kills remaining $\gamma \gamma$

Extract the $\tau \rightarrow \rho^{+-} \nu_{\tau}$ signal.

- At least one jets should contain one charged particle, and at least two neutrals.
- The charged particle should have a π-id ($d E / d x$ only).
- Sizable $\gamma \gamma$ background remains.
Calorimetric PID doesn't work in ρ channel because

τ Polarisation

- The events should pass the topology selection and anti- $\gamma \gamma$ cut.
- $E_{\text {vis }}<90 \mathrm{GeV}$.
- No jet with $E>60 \mathrm{GeV}(43 \mathrm{GeV}$ for ρ channel)

Extract the $\tau \rightarrow \pi^{+-} \nu_{\tau}$ signal. Extract the $\tau \rightarrow \rho^{+-} \nu_{\tau}$ signal.

- At least one jets should contain a single particle.
- The particle should have a π-id (both calorimetric and $d E / d x$).
- Also kills remaining $\gamma \gamma$
- At least one jets should contain one charged particle, and at least two neutrals.
- The charged particle should have a π-id ($d E / d x$ only).
- Sizable $\gamma \gamma$ background remains.
Calorimetric PID doesn't work in ρ channel because γ 's from π^{0} are close to $\pi^{ \pm} \rightarrow$ looks like an $e^{ \pm}$

τ Polarisation

Bacground estimate

- SUSY dominates
- Assume $\Delta_{\text {theor }}=\Delta_{\text {exp }}$, with ILC as only relevant input.$\Delta_{\text {exp }}$ from signal-depleted control sample.
- Due to lack of statistics in the SM $\gamma \gamma$-sample, no serious estimate of uncertainty due to background can be done in
 the ρ-channel!

τ Polarisation

Bacground estimate

- SUSY dominates
- Assume $\Delta_{\text {theor }}=\Delta_{\text {exp }}$, with ILC as only relevant input.
- $\Delta_{\text {exp }}$ from signal-depleted control sample.

SM $\gamma \gamma$-sample, no serious estimate of uncertainty due to background can be done in
 the ρ-channel!

τ Polarisation

Bacground estimate

- SUSY dominates
- Assume $\Delta_{\text {theor }}=\Delta_{\text {exp }}$, with ILC as only relevant input.
- $\Delta_{\text {exp }}$ from signal-depleted control sample.
- Due to lack of statistics in the SM $\gamma \gamma$-sample, no serious estimate of uncertainty due to background can be done in the ρ-channel!

τ Polarisation

Efficency and spectrum correction:

- Select events.
- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Spectrum (π channel only!)

τ Polarisation

Efficency and spectrum correction:

- Select events.
- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Spectrum (π channel only!)

τ Polarisation

Efficency and spectrum correction:

- Select events.
- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Spectrum (π channel only!)

τ Polarisation

Efficency and spectrum correction:

- Select events.
- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- $\epsilon(-1, E), \epsilon(0, E), \epsilon(+1, E)$ from fastsim.

τ Polarisation

Efficency and spectrum correction:

- Select events.
- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- $\epsilon(-1, E), \epsilon(0, E), \epsilon(+1, E)$ from fastsim.
- Spectrum (π channel only!)

- Parametrise actual spectrum for $\mathcal{P}_{\tau}= \pm 1(=F(E, \pm 1))$
- True spectrum will be

$$
\begin{aligned}
& F\left(E, \dot{\mathcal{P}}_{\tau}\right)=\frac{1+\mathcal{P}_{\tau}}{2} F(E,+1)+ \\
& \frac{1-\mathcal{P}_{\tau}}{2} F(E,-1)
\end{aligned}
$$

τ Polarisation

- Fit \mathcal{P}_{τ}, with normalisation from cross-section determination.
- For π-channel (pointless for ρ due to $\gamma \gamma$)

π channel: $\mathcal{P}_{\tau}=93 \pm 6 \pm 5(\mathrm{bgd}) \pm 3$ (SUSYmasses) $\%$
ρ channel: $\mathcal{P}_{\tau}=87.0 \pm 3.4 \%$
True value: $\mathcal{P}_{\tau}=89.6 \%$

τ Polarisation

- Fit \mathcal{P}_{τ}, with normalisation from cross-section determination.

π channel: $\mathcal{P}_{\tau}=93 \pm 6 \pm 5$ (bgd) ± 3 (SUSYmasses) $\%$
ρ channel: $\mathcal{P}_{\tau}=87.0 \pm 3.4 \%$
True value: $\mathcal{P}_{\tau}=89.6 \%$

τ Polarisation

- Fit \mathcal{P}_{τ}, with normalisation from cross-section determination.
- For π-channel (pointless for ρ due to $\gamma \gamma$)
- Repeat fit with modified background.
- Determine effect from $\Delta\left(M_{\tilde{\chi}_{1}^{0}}\right)$ and $\Delta\left(M_{\tilde{\tau}_{1}}\right)$ numerically.

π channel: $\mathcal{P}_{\tau}=93 \pm 6 \pm 5$ (bgd) ± 3 (SUSYmasses) $\%$
ρ channel: $\mathcal{P}_{\tau}=87.0 \pm 3.4 \%$
True value: $\mathcal{P}_{\tau}=89.6 \%$

τ Polarisation

- Fit \mathcal{P}_{τ}, with normalisation from cross-section determination.
- For π-channel (pointless for ρ due to $\gamma \gamma$)
- Repeat fit with modified background.
- Determine effect from $\Delta\left(M_{\tilde{\chi}_{1}^{0}}\right)$ and $\Delta\left(M_{\tilde{\tau}_{1}}\right)$ numerically.

π channel: $\mathcal{P}_{\tau}=93 \pm 6 \pm 5$ (bgd) ± 3 (SUSYmasses) $\%$
ρ channel: $\mathcal{P}_{\tau}=87.0 \pm 3.4 \%$
True value: $\mathcal{P}_{\tau}=89.6 \%$

Detector, machine, and simulation

- Detector requirements:
- Low angle coverage.
- PID
- Resolution more than enough
- Simulation

Detector, machine, and simulation

- Detector requirements:
- Low angle coverage.
- PID
- Resolution more than enough
- Machine
- Can cope with background in RDR nominal.
- Low P: Probably no issue for tracking.
- But: more pairs at higher angles in BeamCal: worse low angle coverage (?)
- And: less lumi in the peak(?). Of-peak lumi is useless for end point.
- Demand to machine-guys: what is the Lumi on peak (ie. within $\sim 100 \mathrm{MeV}$ to nominal, not within 1% !!!)
- Simulation

Detector, machine, and simulation

- Detector requirements:
- Low angle coverage.
- PID
- Resolution more than enough
- Machine
- Can cope with background in RDR nominal.
- Low P: Probably no issue for tracking.
- But: more pairs at higher angles in BeamCal: worse low angle coverage (?)
- And: less lumi in the peak(?). Of-peak lumi is useless for end point.
- Demand to machine-guys: what is the Lumi on peak (ie. within $\sim 100 \mathrm{MeV}$ to nominal, not within 1% !!!)

Detector, machine, and simulation

- Detector requirements:
- Low angle coverage.
- PID
- Resolution more than enough
- Machine
- Can cope with background in RDR nominal.
- Low P: Probably no issue for tracking.
- But: more pairs at higher angles in BeamCal: worse low angle coverage (?)
- And: less lumi in the peak(?). Of-peak lumi is useless for end point.
- Demand to machine-guys: what is the Lumi on peak (ie. within $\sim 100 \mathrm{MeV}$ to nominal, not within 1% !!!)
- Simulation
- Much more SM (orders of magnitude for $\gamma \gamma$) \rightarrow fastsim.
- $d E / d x$

Summary...

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background - SUSY and SM - included.
- Beam-background included: decreases signal by \%5, but also decreases (physics) backaround by 15%.

- $\mathcal{P}_{\tau}=93 \pm 6 \pm 5(\mathrm{bgd}) \pm 3$ (SUSYmasses) $\%\left(\mathcal{P}_{\tau}=87.0 \pm 3.4 \%\right)$
- No mayor detector issues
- Need more channels, at different $E_{c m s}$ and polarisation.

Full account: arXiv:0908.0876 [hep-ex]/DESY 09-125 (submitted to Phys. Rev. D)

Summary...

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background - SUSY and SM - included.
- Beam-background included: decreases signal by \%5, but also decreases (physics) background by 15%.

- $\mathcal{P}_{\tau}=93 \pm 6 \pm 5(\mathrm{bgd}) \pm 3$ (SUSYmasses) $\%\left(\mathcal{P}_{\tau}=87.0 \pm 3.4 \%\right)$
- No mayor detector issues
- Need more channels, at different $E_{c m s}$ and polarisation.

Full account: arXiv:0908.0876 [hep-ex]/DESY 09-125 (submitted to

Summary...

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background - SUSY and SM - included.
- Beam-background included: decreases signal by \%5, but also decreases (physics) background by 15 \%.

\square

Summary...

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background - SUSY and SM - included.
- Beam-background included: decreases signal by \%5, but also decreases (physics) background by 15%.
- $E_{\tau, \text { max }}=41.96_{-0.13}^{+0.15} \mathrm{GeV}, M_{\tilde{\tau}_{1}}=107.69_{-0.06}^{+0.03} \oplus 1.1 \Delta\left(M_{\tilde{\chi}_{1}^{0}}\right) \mathrm{GeV}$
- $E_{\tau, \max }=151.2_{-1.6}^{+1.9} \mathrm{GeV}, M_{\tilde{\tau}_{2}}=183_{-5}^{+11} \mathrm{GeV} \oplus 18 \Delta\left(M_{\tilde{\chi}_{1}^{0}}\right)$.

- No mayor detector issues

- Need more channels, at different $E_{c m s}$ and polarisation.

Summary...

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background - SUSY and SM - included.
- Beam-background included: decreases signal by \%5, but also decreases (physics) background by 15%.
- $E_{\tau, \text { max }}=41.96_{-0.13}^{+0.15} \mathrm{GeV}, M_{\tilde{\tau}_{1}}=107.69_{-0.06}^{+0.03} \oplus 1.1 \Delta\left(M_{\tilde{\chi}_{1}^{0}}\right) \mathrm{GeV}$
- $E_{\tau, \max }=151.2_{-1.6}^{+1.9} \mathrm{GeV}, M_{\tilde{\tau}_{2}}=183_{-5}^{+11} \mathrm{GeV} \oplus 18 \Delta\left(M_{\tilde{\chi}_{1}^{0}}\right)$.
- $\Delta\left(\sigma_{\tilde{\tau}_{1}}\right)=3.1 \%, \Delta\left(\sigma_{\tilde{\tau}_{2}}\right)=4.2 \%$.

- No mayor detector issues

- Need more channels, at different $E_{c m s}$ and polarisation.

Summary...

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background - SUSY and SM - included.
- Beam-background included: decreases signal by \%5, but also decreases (physics) background by 15%.
- $E_{\tau, \text { max }}=41.96_{-0.13}^{+0.15} \mathrm{GeV}, M_{\tilde{\tau}_{1}}=107.69_{-0.06}^{+0.03} \oplus 1.1 \Delta\left(M_{\tilde{\chi}_{1}^{0}}\right) \mathrm{GeV}$
- $E_{\tau, \text { max }}=151.2_{-1.6}^{+1.9} \mathrm{GeV}, M_{\tilde{\tau}_{2}}=183_{-5}^{+11} \mathrm{GeV} \oplus 18 \Delta\left(M_{\tilde{\chi}_{1}}\right)$.
- $\Delta\left(\sigma_{\tilde{\tau}_{1}}\right)=3.1 \%, \Delta\left(\sigma_{\tilde{\tau}_{2}}\right)=4.2 \%$.
- $\mathcal{P}_{\tau}=93 \pm 6 \pm 5(\mathrm{bgd}) \pm 3$ (SUSYmasses) $\%\left(\mathcal{P}_{\tau}=87.0 \pm 3.4 \%\right)$
- Need more channels, at different $E_{\text {cms }}$ and polarisation.

Summary...

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background - SUSY and SM - included.
- Beam-background included: decreases signal by \%5, but also decreases (physics) background by 15%.
- $E_{\tau, \text { max }}=41.96_{-0.13}^{+0.15} \mathrm{GeV}, M_{\tilde{\tau}_{1}}=107.69_{-0.06}^{+0.03} \oplus 1.1 \Delta\left(M_{\tilde{\chi}_{1}^{0}}\right) \mathrm{GeV}$
- $E_{\tau, \max }=151.2_{-1.6}^{+1.9} \mathrm{GeV}, M_{\tilde{\tau}_{2}}=183_{-5}^{+11} \mathrm{GeV} \oplus 18 \Delta\left(M_{\tilde{\chi}_{1}^{0}}\right)$.
- $\Delta\left(\sigma_{\tilde{\tau}_{1}}\right)=3.1 \%, \Delta\left(\sigma_{\tau_{2}}\right)=4.2 \%$.
- $\mathcal{P}_{\tau}=93 \pm 6 \pm 5(\mathrm{bgd}) \pm 3$ (SUSYmasses) $\%\left(\mathcal{P}_{\tau}=87.0 \pm 3.4 \%\right)$
- No mayor detector issues
- Need more channels, at different $E_{c m s}$ and polarisation.

Summary...

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background - SUSY and SM - included.
- Beam-background included: decreases signal by \%5, but also decreases (physics) background by 15%.
- $E_{\tau, \text { max }}=41.96_{-0.13}^{+0.15} \mathrm{GeV}, M_{\tilde{\tau}_{1}}=107.69_{-0.06}^{+0.03} \oplus 1.1 \Delta\left(M_{\tilde{\chi}_{1}^{0}}\right) \mathrm{GeV}$
- $E_{\tau, \text { max }}=151.2_{-1.6}^{+1.9} \mathrm{GeV}, M_{\tilde{\tau}_{2}}=183_{-5}^{+11} \mathrm{GeV} \oplus 18 \Delta\left(M_{\tilde{\chi}_{1}}\right)$.
- $\Delta\left(\sigma_{\tilde{\tau}_{1}}\right)=3.1 \%, \Delta\left(\sigma_{\tilde{\tau}_{2}}\right)=4.2 \%$.
- $\mathcal{P}_{\tau}=93 \pm 6 \pm 5(\mathrm{bgd}) \pm 3$ (SUSYmasses) $\%\left(\mathcal{P}_{\tau}=87.0 \pm 3.4 \%\right)$
- No mayor detector issues
- Need more channels, at different $E_{c m s}$ and polarisation.

Summary...

Full simulation of $\tilde{\tau}$ production in SPS1a' in the ILD detector was presented

- All background - SUSY and SM - included.
- Beam-background included: decreases signal by \%5, but also decreases (physics) background by 15%.
- $E_{\tau, \text { max }}=41.96_{-0.13}^{+0.15} \mathrm{GeV}, M_{\tilde{\tau}_{1}}=107.69_{-0.06}^{+0.03} \oplus 1.1 \Delta\left(M_{\tilde{\chi}_{1}^{0}}\right) \mathrm{GeV}$
- $E_{\tau, \max }=151.2_{-1.6}^{+1.9} \mathrm{GeV}, M_{\tilde{\tau}_{2}}=183_{-5}^{+11} \mathrm{GeV} \oplus 18 \Delta\left(M_{\tilde{\chi}_{1}^{0}}\right)$.
- $\Delta\left(\sigma_{\tilde{\tau}_{1}}\right)=3.1 \%, \Delta\left(\sigma_{\tilde{\tau}_{2}}\right)=4.2 \%$.
- $\mathcal{P}_{\tau}=93 \pm 6 \pm 5(\mathrm{bgd}) \pm 3$ (SUSYmasses) $\%\left(\mathcal{P}_{\tau}=87.0 \pm 3.4 \%\right)$
- No mayor detector issues
- Need more channels, at different $E_{c m s}$ and polarisation.

Full account: arXiv:0908.0876 [hep-ex]/DESY 09-125 (submitted to Phys. Rev. D)

... and outlook

- We will continue to study more aspects of SPS1a'.
- other channels: $\tilde{\mu}^{-}$, and ẽ-pairs, $\tilde{\tau}_{1}$, bosinos,...
- varying $E_{c m s}$
- Need (not necessarily very exact) theory:
- More full and fast simulation:

... and outlook

- We will continue to study more aspects of SPS1a'.
- other channels: $\tilde{\mu}^{-}$, and ẽ-pairs, $\tilde{\tau}_{1}$, bosinos,...
- varying $E_{c m s}$
- Need (not necessarily very exact) theory:
- How does aspects we measure hang together ?
- le. we need the analytical formulae for what is generated.
- More full and fast simulation:

... and outlook

- We will continue to study more aspects of SPS1a'.
- other channels: $\tilde{\mu}^{-}$, and ẽ-pairs, $\tilde{\tau}_{1}$, bosinos,...
- varying $E_{c m s}$
- Need (not necessarily very exact) theory:
- How does aspects we measure hang together ?
- le. we need the analytical formulae for what is generated.
- More full and fast simulation:
- Full sim of the full SPS1a'
- Fastsim for $\gamma \gamma$

... and outlook

- We will continue to study more aspects of SPS1a'.
- other channels: $\tilde{\mu}^{-}$, and ẽ-pairs, $\tilde{\tau}_{1}$, bosinos,...
- varying $E_{c m s}$
- Need (not necessarily very exact) theory:
- How does aspects we measure hang together ?
- le. we need the analytical formulae for what is generated.
- More full and fast simulation:
- Full sim of the full SPS1a'
- Fastsim for $\gamma \gamma$

This will be fun!

[^0]: $N_{\text {sign }}=9800$ (Efficiency 14.2 \%)
 $N_{b c k, S M}=390, N_{b c k, S U S Y}=1020$.

