Permanent Quadrupole Study Plan

Kyoto Univ., KEK^A Y. Iwashita, H. Fujisawa, H.Tongu, M. Masuzawa^A, T. Tauchi^A

Contents

- Gluckstern's Adjustable PMQ (5-Ring-Singlet)
- Preliminary Magnetic Field Measurements
- Initial Test Position at ATF2 Beam Line
- Summary

Gluckstern's Adjustable PMQ – 5-Ring-Singlet –

Gluckstern's skewless variable PMQ

R.L. Gluckstern and R.F. Holsinger: Adjustable Strength REC Quadrupoles, IEEE Trans. Nucl. Sci., Vol. NS-30, NO. 4, August 1983, <u>http://epaper.kek.jp/p83/PDF/PAC1983_3326.PDF</u>

Gluckstern's 5-ring PMQ Singlet(2): "Continuously Adjustable" PMQ fabricated

The 5-ring singlet PM-FFQ

Disc(20mm)

Preliminary Magnetic Field Measurements

— based on the last year's —

Field Measurement: Rotating magnet instrument

Magnets are rotated to find their magnetic center against the outer shell.

Measurement on Each Magnet

By Rotation Coil

-48.3

6.851

mean

7.5

LCWA2009, Sep. 30, Albuquerque

1.15

Observations

- \bigcirc GL (100~20%) can be covered.
- Angle adjustment needed.
- Good reproducibility.
- But the value is big – needs adjustment.
- Minor mechanical modification improved the friction.

Initial Test Position at ATF2 Beam Line

Study Plan

- Because the test at QD0 position interferes with the current activity, different position was sought.
- We need experiences in using this new device.
- Practical experience can be taken through operation at the upstream (no interfere with the original QD0)
 - Vacuum flange has to be fixed to the duct after the fabrication.
 - ➡ Develop easy dismantle method.
 - ➡ Vibration evaluation (<50nm?), etc.

What can be Tested?

- Isn't just magnetic field measurement enough? No!— Only GL is measured by rotation coil. (If so, any beam test is waste of time.)
- What can be monitored? — Profile (size) by wire scanner — Position by BPM
 - Size by Shintake Monitor
- Second Evaluation: x-y coupling, high order, stability, reproducibility, etc.

Practical experience: installation, stability...

Summary

Good reproducibility in magnetic center excursion and plane tilt, but they were big.

- ➡ Readjusting the magnet pieces in the holder.
- ➡ May use tree DOF's (three motors).
- Fix vacuum flange afterwards.
- Practical experience will be taken through operation at the upstream (no interfere with the original QD0)

Appendix

Demagnetization by Radiation

Energy deposit

	GLD	SiD	SiD (by Takahashi)	neutron
BeamCAL	17mW	13mW	29mW	
QD0	94mW	97mW	147mW	10 ⁵ [n/cm ² s]
SD0	11mW	11mW	11mW	
QF1	16mW	18mW	15mW	
SF1	0.4mW	0.3mW	1mW	

very preliminary results by T.Abe (university of Tokyo), in private communication

Demagnetization by 14MeV neutron

Magnet	Demag. ratio [/1x10 ¹³ n/cm ²]	iHc [Oe]
47H	10.2%	
44H	1.8%	16
39SH	0.7%	21
32EH	0.3%	30

T. Kawakubo, et al., The 14th Symposium on Accelerator Science and Technology, Tsukuba, Japan, November 2003, pp. 208-210, in Japanese, http://conference.kek.jp/sast03it/WebPDF/1P027.pdf

Continuous 1mo.(2.6x10⁶s) operation may cause about 0.01[%] of (reversible?) demagnetization on NEOMAX 32EH. (1% for 10 years) ... needs more info.

