Electron Cloud Mitigation Studies at CesrTA

Joseph Calvey 10/1/2009

Introduction

- The electron cloud effect is a potential limiting factor in future linear collider damping rings, so it is important to find the cheapest and most effective method for mitigating this effect.
- There are several different types of mitigation techniques currently under investigation at CesrTA
 - Beam pipe coatings
 - TiN
 - · Amorphous carbon
 - Grooves
 - Solenoids
 - Clearing electrodes (planned)
- These techniques are applied
- in different magnetic field regions
 - Drift
 - Wiggler
 - Chicane (dipole)
 - Quadrupole
- Local e- cloud density is measured with retarding field analyzers

Drift Mitigation

- We are investigating mitigation techniques in drift chambers made of different materials
 - Aluminum
 - RFA has 9 collectors and is integrated into beam pipe
 - To be compared with amorphous carbon coated aluminum chamber
 - At a symmetric location to the bare Al chamber
 - Photon flux for AI chamber with e+ beam = photon flux for α C chamber with e- beam
 - Copper
 - RFA has 5 collectors and sits on top of beam pipe
 - To be compared with TiN coated copper chamber
 - Next to the bare Cu chamber.

Drift Mitigation- Al

- Plots show RFA collector current vs beam current
 - Comparing carbon coated chamber (red) to bare AI (blue)
 - Thick line: central 3 collectors
 - More sensitive to multipacting
 - Thin line: outer six collectors
 - In units of nA/mm^2
 - · RFA transparency has been taken into account
 - Also normalized to 15W (carbon coated chamber) photon flux
 - Uncoated chamber shows significantly more response for both electron and positron beams, particularly in the central collectors

Drift Mitigation-Cu

- Plots show RFA collector current vs beam current
 - Comparing TiN coated chamber (green) to bare Cu (blue)
 - Thick line: central collector
 - More sensitive to multipacting
 - Thin line: outer four collectors
 - In units of nA/mm^2
 - · RFA transparency has been taken into account
 - Also normalized to 15W (carbon coated chamber) photon flux
 - Normalized response is very similar for positron beam, but TiN chamber seems to perform much better for electron beam
 - May be due to conditioning in the Cu chamber, or slightly incorrect photon flux (more on this later)

Drift Mitigation Summary

- Plots show average of all collectors for all drift RFAs
 - In general, the most cloud is seen in the bare Al chambers (blue)
 - Much less in copper chambers (black)
 - Less still in coated chambers

TiN: greenCarbon: red

Drift Mitigation Summary II

- Same plots as last slide, but not normalized to photon flux
 - All is still by far the worst, but normalization makes some difference in the relative strength of the signal in the other chambers
 - Current calculation of photon flux assumes no reflections
 - A new synchrotron radiation program, which will include reflections, is under development

Vacuum Data

- Plots show dynamic pressure rise vs beam dose
 - Top plot shows pressure rise near carbon coated chamber (blue) is slightly higher than near Al chamber (red)
 - Bottom plots shows that pressure rise is much higher near TiN coated wiggler (blue) than near Cu wiggler (red)
- This is indirect evidence that TiN has somewhat worse vacuum properties

Solenoid Mitigation

- We are in the process of winding solenoid coils along all the drift regions at CESR
- When complete, we can test the effectiveness of this method by measuring the tune shift with solenoids on and off
- In the meantime, we looked at RFA response as an adjacent solenoid magnet was ramped up (0 70G)
 - Beam conditions: 1x45x1.85 mA e+. 5GeV. 14ns
 - As expected, a significant cloud suppression is observed in most collectors
 - However, collectors near the inside of the chamber actually see an increased response
 - This is probably due to electrons streaming from a nearby distributed ion pump

Chicane Mitigation

- We have installed the PEP-II chicane in our L3 straight region
 - Each magnet is instrumented with a 17 collector RFA
 - This allows us to investigate the behavior of the cloud as a function of magnetic field
 - Range: ~25 1100 Gauss
- Two different mitigation techniques are employed
 - TiN coating (2 magnets)
 - Grooves + TiN coating (1 magnet)
 - The last magnet is bare Aluminum
- We are looking for
- "cyclotron resonances"
 - These occur when the bunch spacing is an integral multiple of the cyclotron period of an electron
 - -- Data shown is plotted against "resonance number"
 - (= bunch spacing / cyclotron period)

Chicane Current Scan

- Current scan, 1x45 e+, 14ns, 5GeV
 - Both mitigation techniques show drastic improvement relative to Aluminum
 - Note that Al signal is divided by 20
 - Al shows significant mutipacting
 - TiN actually seems to saturate
 - Groove + TiN is evenbetter than just TiN

Chicane Field Scan

- 1x45x1 mA, 4ns, 5GeV, positrons
 - Plots show sum of all collectors in each RFA
 - Note that Aluminum RFA signal is divided by 20
 - In terms of absolute current, Al >> TiN > Grooved + TiN
 - On resonance, there are peaks in the Al chamber and dips in the TiN and grooved chambers
 - Both dips and peaks are exactly on resonance

- 1x45x1 mA, 4ns, 5GeV, e+ Plots show outer and center collectors for the AI, TiN, and Grooved chambers
- Resonance tends to be much more pronounced in outer collectors
 - TiN chamber is asymmetric
 - Structure seems to be starting to change at high field
 - Dips -> peaks in central Aluminum collector

Same in edge of grooved chamber?
1x45x1 mA e+, 4ns, 5GeV, Chicane Scan: Center vs Edge, Aluminum Chaml

Wiggler Mitigation

- We have three wigglers instrumented with RFAs
 - Bare Cu
 - TiN coated
 - Grooved

Groove tips/valley radius < 0.002" !!

- Plots shown will be for an RFA in the center of a wiggler pole
- There are also RFAs in a longitudinal and intermediate field
- RFAs have 12 collectors and are built into the beam pipe

Wiggler Current Scan

- Plots show average collector current density vs beam current
 - 1x45 e+, 2 GeV, 14ns
 - Cu, TiN, and grooved chambers all have comparable responses (when normalized to photon flux)
 - Central collectors (right plot) show a more significant difference
 - This where one expects multipacting to occur

Voltage Scans

- Plots show collector response as a function of retarding voltage and collector number, normalized to photon flux
- Beam conditions: 1x45x.5 mA e+, 14ns, 2 GeV
- Data is from two different runs
 - The wigglers were shuffled around between runs, so these two plots are actually from the same longitudinal position
 - Cu (left) shows less response than TiN (right)
 - Is it possible TiN has a slightly higher quantum efficiency?

Voltage Scans II

- Plots show collector response as a function of retarding voltage and collector number
- Beam conditions: 1x45x.9 mA e+, 14ns, 2 GeV
 - Data is from two different runs
 - The wigglers were shuffled around between runs, so these two plots are actually from the same longitudinal position
 - Multipacting is stronger in Cu chamber

Voltage Scans III

- Beam conditions: 1x45x.9 mA e+, 14ns, 2 GeV
 - The wigglers are in the same longitudinal position
 - Grooves seem more effective than TiN
 - Grooved structure very obvious
 - But why don't the two TiN plots match when normalized to photon flux?
 - Photon flux normalization incorrect?
 - Synchrotron radiation pattern varies quickly over wiggler region
 - Processing?
 - We have not seen much evidence of this in Cu in the short term, but we will investigate long term processing in our November run

Run #1326 (1x45x1 mA e+, 5GeV, 14ns): 01W_G1 Wig1W Center pole Col Curs Copper

Voltage Scans IV

- 1x45x1 mA e+, 5GeV, 14ns
 - Photon flux actually lower at 5GeV
 - These plots are not normalized to flux
 - Multipacting much more obvious in Cu chamber
 - Odd structure due to idiosyncratic behavior of RFA, which needs to be incorporated into simulations
 - We have enough resolution in our RFA to pick up the structure of the grooved chamber

Wiggler Ramp

- RFA currents were monitored while the L0 wigglers were ramped from 0 to 1.9T
- Beam conditions: 1x45x1 mA e+, 8ns spacing, 4 GeV
- Plots show collector currents vs wiggler field (.2 1.9T) and collector number for pole center RFAs
- Copper chamber sees a transition from "dipole" regime (large central peak) to "wiggler" regime (peak with broad shoulders) around 5000 Gauss
- Structure emerges in grooved chamber at about the same field value

Low Field Structure

- Signal in longitudinal field collectors disappears by ~500 Gauss
- Cyclotron resonances are clearly visible in the Cu center pole RFA
 - Clear peaks in central collector
 - Less clear in outer collectors
 - TiN coated and grooved RFAs also see the resonances, though less prominently

Quadrupole Mitigation

- We have instrumented a quadrupole chamber with an RFA
- One collector sees a huge amount of current
 - This is where the electrons are guided by the quad field lines
- We are installing a TiN coated quad chamber

Conclusions

- In a drift space, both TiN and carbon coating show a significant improvement relative to aluminum, but a more modest improvement relative to copper
 - Solenoids are probably also effective, but we will take more data with the ion pumps turned off
 - We can also test this with tune shift measurements
 - In a chicane (dipole field), TiN coating is very effective compared to AI, and TiN coated grooves are even better
 - We clearly observe cyclotron resonances in a field scan
- Grooves appear to be the most effective mitigation in a wiggler, but more quantitative conclusions will need to wait until we have a better understanding of processing and photon reflectivity
 - Cyclotron resonances are also observed vs wiggler field
 - We also plan to install a clearing electrode in a wiggler
- We have installed a quadrupole RFA, and will test the effectiveness of TiN coating in this magnet
- We have taken a great deal of RFA data in a variety of beam conditions and magnetic field regions, and welcome any help in analyzing this data