

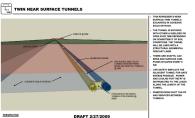
GDE ACCELERATOR ADVISORY PANEL REVIEW

CONVENTIONAL FACILITIES AND SITING GROUP

Main Linac Tunnel Configuration Study

Tom Lackowski

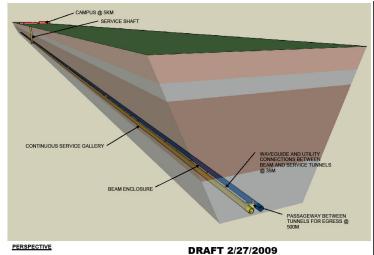
Purpose

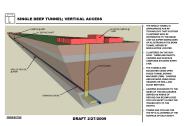

- The Main Linac Tunnel Configuration study is a "Value Engineering" of the underground construction.
 - This is one of the CFS TD Phase 1 primary goals.
- This study will provide CFS cost data to Project Management to asses the overall value of various tunnel configurations.
 - Technical Considerations
 - Installation and Operations

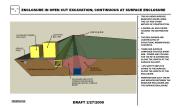
Tunnel Configurations

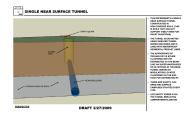
- Development of study configurations
 - The deep twin tunnel arrangement used in the RDR is used as the baseline for functional requirements.
 Adjustments are made to suit the configuration under study.
 - Configurations have been adapted from the XFEL and Project X Collaborations. Additional configurations have been generated to optimize the requirements of alternative technical arrangements such as the KlyCluster.
 - This study is evaluating both deep tunnel excavation and near surface solutions.

Configurations








TWIN DEEP TUNNELS; VERTICAL ACCESS

- THIS IS THE RDR BASE-
- LINE PROFILE. THE TWIN TUNNEL IS APPROPRIATE FOR
- DISTRIBUTED RF. THERE ARE SHAFTS. CAVERNS AND SURFACE
- CAMPUSES SITUATED EVERY 5 KM. THE TUNNELS ARE
- **EXCAVATED USING OPEN FACED TUNNEL BORING** MACHINES (TBM). CAVERNS ARE EXCAVED USING ROAD HEADERS OR DRILL AND BLAST METHODS
- LIFE SAFETY EMPLOYS THE ADJACENT TUNNEL FOR SAFE EGRESS PAS-SAGE
- POWER AND COOLING FOR THE RF IS DISTRUBUTED TO THE LOADS ALONG THE LENGTH OF THE TUNNEL. PENETRA-TIONS DUCT THE RF AND SERVICES BETWEEN TUNNELS.

ftp://fess-

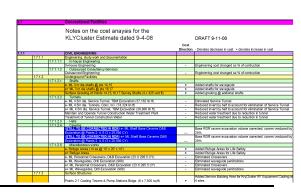
ftp.fnal.gov/public/ilc/agenda/VE%20Efforts/MAIN%20LINAC%20TUNNEL%20CONFIGURATION%20 STUDIES/ilc%20scheme%20%20Feb%2016%202009.pdf

TILC09 and GDE AAP Review Meeting - Tsukuba, Japan

Configuration Matrix

			30M	30M	30M		
	DEEP		NEAR SURFACE				
	Twin Deep Tunnels	Single Deep Tunnel	Twin Near Surface Tunnels	Near Surface Tunnel, at Surface Gallery	Single near Surface Tunnel	Enclosure in Open Cut, Cont. Gallery	Enclosure & Cont. Gallery in Open Cut
EXCAVATION	TBM	TBM	TBM	TBM & OPEN CUT	TBM	OPEN CUT	OPEN CUT
No of TUNNELS	TWO-TUNNEL	ONE-TUNNEL	TWO-TUNNEL	TWO-TUNNELS	ONE-TUNNEL	ONE-TUNNEL	TWO-TUNNELS
SHAFT SOIL	VARIES	VARIES	VARIES	VARIES	SOFT / SLURRY	NA	NA
TUNNEL SOIL	ROCK	ROCK	COHESIVE SOIL or ROCK	COHESIVE SOIL -Low permeability	Saturated Sand & Gravel	SOILS VARIES	SOILS VARIES
SERVICE SPACE	SECOND TUNNEL	SURFACE BUILDINGS	SECOND TUNNEL	CONTINOUS SERVICE GALLERY	AT CAMPUSES	CONTINOUS SERVICE GALLERY	CONTINOUS SERVICE GALLERY
ILC Technology	DISTRIBUED RF	CLUSTERED RF	DISTRIBUED RF	DISTRIBUED RF	CLUSTERED RF	DISTRIBUED RF	DISTRIBUED RF
SIMILAR TO	RDR Sample Sites	RDR & CLIC	RDR	Dubna ILC	XFEL	Project X	Project X
ACCESS	Vertical Shaft	Vertical Shaft	Vertical Shaft	Vertical Shaft	Vertical Shaft	Hatch	Hatch

• Electrical power levels remains constant. Clustered RF reduces electrical distribution.



Cost Estimate Methodology

- Estimates are prepared in the same WBS format as the U.S. RDR estimate. This allows for line by line comparisons at the lowest WBS level.
- The Estimate is color coded so that changes are clearly highlighted.
- A description for each line in the cost estimate describes the basis for changes.
 - Estimates done for the KlyCluster can be obtained from Cost Engineers.

Unit Assembly Costs

- Deep tunnels, caverns and shaft taken from RDR.
- Open cut excavations, enclosures and surface galleries from Project X.
- Near surface tunnels cost are being generated by consulting Engineer.
- Material costs, labor and equipment rates used are for the Midwest U.S.
- Estimate comparisons are made in common year dollars (2006).

<u>Summary</u>

- Hanson Professional Consulting Engineers:
 - Will complete unit costs.
 - Will assemble Main Linac Cost estimate for remaining five configerations
- Hughes Associates:
 - Perform Life Safety and Exiting Analysis for all configurations.
- Main Linac Tunnel Configuration study will be brought to completion and assembled into a final report to document the work done.