Calibration of the Scintillator HCAL of ILD

Angela Lucaci-Timoce

(on behalf of the CALICE collaboration)

Overview

Introduction Precision of AHCAL Calibration Test beam exercise MIP Stubs at ILD Summary

From measured amplitude to energy in MIPs:

$$E[ext{MIP}] = rac{A}{A_{ extsf{MIP}}} \cdot f_{ extsf{resp}}\left(rac{A}{A_{ extsf{pixel}}}
ight)$$

where

- A measured amplitude in ADC counts
- A_{MIP} cell by cell MIP scale
 - predicted by simulation and verified with test beam data
 - Estimated time to acquire sufficient statistics for entire ILD detector: about 2 months \rightarrow too long (but we can use MIP stubs, see later)
- *f*_{resp} SiPM response function (non-linear), measured apriori on test bench
- *A_{pixel}* amplitude of a single fired photo-sensor pixel (from LED-induced signals)

Idea

- Use ILD simulations of single hadrons and of jets
- Induce deliberately mis-calibrations due to temperature fluctuations, statistical precision of calibration factors, etc
- Check the effects on energy resolution

Method

- Consider mis-calibrations of the AHCAL energy scale with a random factor following a Gaussian distribution with mean at zero
- Rerun complete ILD reconstruction (including Pandora PFA algorithm)

AHCAL Calibration: How Much Precision?

Single Hadron Resolution

- Shoot K_L^0 in ILD detector and reconstruct energy sum in ECAL+HCAL
- Effects of coherent fluctuations (i.e. due to TEMPERATURE):

- HCAL inside coil \rightarrow expect T variations only from endcaps (via cable paths), if any. Worse realistic case: < 1° T variation
- For $\sim 4\%/K$ variation of SiPM response $\Rightarrow \sim 8\%$ worse single particle resolution at 100 GeV, if no T corrections applied

AHCAL Calibration: How Much Precision?

Jet Energy Resolution

- Use $Z^0 \rightarrow uds$ samples at $\sqrt{s} = 91$ GeV and at 500 GeV
- Run complete ILD reconstruction chain (including Pandora PFA algorithm)
- 4 scenarios studied in the Munich group:

i)	Temperature/voltage fluctuations	\Rightarrow	global shift for all cells, on event-by-event basis
ii)	Imperfect intercalibration of	\Rightarrow	uncorrelated layer-wise
	individual modules		Shifts
iii)	Imperfect intercalibration of	\Rightarrow	uncorrelated cell-wise
	individual cells		shifts
iv)	Imperfect calibration of detector	\Rightarrow	global shift for all cells,
	energy scale		constant for all events

AHCAL Calibration: How much precision?

Jet Energy Resolution - continued

- Worst case i: 5% RMS ⇒ 10% worse dijet energy resolution (can be recalibrated in situ with LED system or MIP stub in hadronic)
- Cases ii, iii: no significant effect
- Case iv: large effect, but also shifted reconstructed dijet invariant mass

AHCAL Calibration: Will it work?

- Exercise with test beam data:
 - transport calibration to different temperature/high voltage
 - study energy resolution
 - can we find MIP tracks?

2 methods to transport MIP calibration from FNAL to CERN conditions:

1) T/U calibration (instantaneous, but non-local):

$$A(T_1, U_1) = A(T_2, U_2) + \frac{dA}{dT}(T_1 - T_2) + \frac{dA}{dU}(U_1 - U_2)$$

2) Gain correction (local, but non-instantaneous):

$$A(T_1, U_1) = A(T_2, U_2) + \frac{dA}{dG}(G(T_1, U_1) - G(T_2, U_2))$$

Transport of the MIP Calibration

Comparison between T/U calibrated FNAL and reference CERN sample

- Remaining 4% offset consistent with different muon beam energies (32 GeV at FNAL, 80 GeV at CERN)
- Results: shift = 4.2%, spread = 7.8%

Transport of the MIP calibration - continued

Comparison between G calibrated FNAL and reference CERN sample

- Results: shift = 2.9%, spread = 7.7%
- Both methods are equivalent in terms of precision and consistent with each other

In Situ MIP Calibration

- Collect all MIP stubs in pion runs to obtain layer by layer correction factors to the MIP calibration after transportation
- Method: look for isolated hits which form MIP tracks in hadron events
- Fit amplitude of all tracks in a layer → get most probable value of energy loss ⇒ correction factors

In Situ MIP Calibration - continued

CERN

FNAL - G correction

Impact on Hadronic Response

• Residual from linearity of reconstructed hadron showers fully contained in the AHCAL (8 ${
m GeV} < E < 80 {
m GeV}$)

Angela Lucaci-Timoce

reference

LCWA09 - Albuquerque - 29th September - 3rd October

MIP Stubs at ILD

- Even at Z⁰ resonance, no channel by channel calibration within realistic running times → look for MIP stubs in jets and define a MIP correction layer by layer
- 1000 identified tracks per layer→ calibration precision of 3-4%
- Required luminosity per electronic module (HBU) at Z^0 pole:

Track segments in $Z^0 \rightarrow$ uds at 91.2 GeV

• Luminosity requirement for in situ calibration with MIP stubs from jets:

	Luminosity at 91 GeV	Lumi. at 500 GeV
layer-module to 3% to layer 20	1 pb ⁻¹	1.8 fb ⁻¹
layer-module to 3% to layer 48	10 pb ⁻¹	20 fb ⁻¹
HBU to 3% to layer 20	20 pb ⁻¹	36 fb ⁻¹

 For endcaps: muons from the beam halo might be used for calibration (rates between 10 Hz/m² and 10 kHz/m² at full energy)

What level of precision is required?

- Worse case scenario: uncorrected temperature variation during data taking
- Simulated as event by event coherent shifts with RMS=5%
- Effect on single particle energy resolution: max 10% worsening
- Effect on di-jet energy resolution: max 10% (5%) worse at 500 (91) GeV

How do you monitor and maintain it?

- Inter-calibration for calorimeter cells can be obtained during test beam runs and transported to the operation condition of 'collider run'
- \sim 6% uncertainty with both tested transport methods
- Calibration offsets layer by layer measured using MIP stubs
- No impact on hadron energy resolution from calibration transport

If operation at the Z^0 pole is your strategy, how much data is required?

- A cell by cell MIP calibration is not necessary in situ
- Average values for individual module layers with 3% accuracy from a data set corresponding to 10 $\rm pb^{-1}$ at the Z^0 pole, or to 20 $\rm fb^{-1}$ at 500 GeV

BACK-UP SLIDES

AHCAL Calibration: Monitoring

- When applying test beam based calibrations to collider data, need to monitor possible time-dependent variations due to
 - changed operating conditions (voltage, etc)
 - ageing effects
 - mechanical de-adjustments during handling

Monitoring methods

- LED system
- in-situ MIP calibration using track segments and hadron showers (see later)
- slow control reading of bias voltages and temperature

