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Introduction
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AHCAL Calibration: How?

@ From measured amplitude to energy in MIPs:
A A
E[MIP] = — -f —
[ ] AMIP resp <Apixel )

where
@ A - measured amplitude in ADC counts

@ Ayp - cell by cell MIP scale
- predicted by simulation and verified with test beam data
- Estimated time to acquire sufficient statistics for entire ILD detector:
about 2 months — too long (but we can use MIP stubs, see later)

@ fresp - SIPM response function (non-linear), measured apriori on test bench

9 Apixel - amplitude of a single fired photo-sensor pixel (from LED-induced
signals)
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AHCAL Calibration: How Much Precision?

@ Use ILD simulations of single hadrons and of jets

@ Induce deliberately mis-calibrations due to temperature fluctuations,
statistical precision of calibration factors, etc

@ Check the effects on energy resolution

@ Consider mis-calibrations of the AHCAL energy scale with a random
factor following a Gaussian distribution with mean at zero

@ Rerun complete ILD reconstruction (including Pandora PFA algorithm)
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AHCAL Calibration: How Much Precision?

Single Hadron Resolution

@ Shoot K? in ILD detector and reconstruct energy sum in ECAL+HCAL
@ Effects of coherent fluctuations (i.e. due to TEMPERATURE):
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@ HCAL inside coil — expect T variations only from endcaps (via cable
paths), if any. Worse realistic case: < 1° T variation

® For ~ 4%/K variation of SiPM response = ~ 8% waorse single particle
resolution at 100 GeV, if no T corrections applied
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AHCAL Calibration: How Much Precision?

Jet Energy Resolution

@ Use Z° — uds samples at /s = 91 GeV and at 500 GeV

@ Run complete ILD reconstruction chain (including Pandora PFA
algorithm)

@ 4 scenarios studied in the Munich group:

i)  Temperature/voltage fluctuations = global shift for all cells, on
event-by-event basis

i) Imperfect intercalibration of = uncorrelated layer-wise
individual modules shifts

i) Imperfect intercalibration of = uncorrelated cell-wise
individual cells shifts

iv) Imperfect calibration of detector = global shift for all cells,
energy scale constant for all events
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AHCAL Calibration: How much precision?

Jet Energy Resolution - continued

Normalized, 2° — uds, Icosdl < 0.7 at 500GeV.

Normalized, 2° -~ uds, Icosl < 0.7 at 500GeV.
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4 Normalized, 2° — uds, Icosdl < 0.7 at 500GeV.

Normalized, Z° - uds, Icosdl < 0.7 at 500GeV.

© (iii) Spread from cell to cell © (iv) Spread with constant factor
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@ Worst case i: 5% RMS = 10% worse dijet energy resolution (can be
recalibrated in situ with LED system or MIP stub in hadronic)

@ Case iv: large effect, but also shifted reconstructed dijet invariant mass
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AHCAL Calibration: Will it work?

@ Exercise with test beam data:

@ transport calibration to different temperature/high voltage
@ study energy resolution
@ can we find MIP tracks?

T/U correction
CERN data FNAL data

"collider mode" \\_/)'test beam mode"
(reference)

Gain correction

@ 2 methods to transport MIP calibration from FNAL to CERN conditions:

1) T/U calibration (instantaneous, but non-local):
dA dA

A(T1, Up) = A(T2, Up) + ﬁ(Tl —T2) + m(ul —Uy)
2) Gain correction (local, but non-instantaneous):

dA
A(T1, U1) = ATz, Uz) + 5= (G(T1, Uz) = G(Tz2, Uz))
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Transport of the MIP Calibration

@ Comparison between T/U calibrated FNAL and reference CERN sample

Before T/U correction: After T/U correction:

@ Black: before transport @ Black: after transport
@ Red: Ucern = UrnaL @ Red: Ucern = UrnaL
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@ Remaining 4% offset consistent with different muon beam energies
(32 GeV at FNAL, 80 GeV at CERN)

@ Results: shift =4.2% , spread =7.8%
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Transport of the MIP calibration - continued

@ Comparison between G calibrated FNAL and reference CERN sample

Relative difference

@ Black: all channels
@ Red: Ucern = UrnaL
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@ Results: shift =2.9% , spread =7.7%

@ Both methods are equivalent in terms of precision and consistent with
each other
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In Situ MIP Calibration

@ Collect all MIP stubs in pion runs to obtain layer by layer correction
factors to the MIP calibration after transportation

@ Method: look for isolated hits

which form MIP tracks in hadron @ Fit amplitude of all tracks in a

events layer — get most probable value
of energy loss = correction
factors

identified track
Landau + Gauss fit:
. MPV =0.9938 + 0.0175

PN RNENE IRRNE ERUTE FRUTE FRRN FRAN AR

' Amplnude [MIP]
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In Situ MIP Calibration - continued

ERN FNAL - G correction

I

L CERN: layerwise Lan-Gau fit on cells with > 1000 entrjes [ FNAL_G: layerwise Lan-Gau fit on cells with > 1000 entrles
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@ Average shift: 1% @ Average shift: 2.2%
@ Layers 13, 22: bad transport
coefficients, corrected with
in-situ calibration )
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Impact on Hadronic Response

@ Residual from linearity of reconstructed hadron showers fully contained in
the AHCAL (8 GeV < E < 80 GeV)

BEFORE layer by layer in situ  § AFTER layer by layer
calibration from MIP stub correction
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@ Hadron energies with FNAL T/U @ Clear agreement between
and G coeff. are in agreement, different calibration methods
but ~ 5% higher than CERN
reference ) )
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MIP Stubs at ILD

@ Even at Z° resonance, no channel by channel calibration within realistic
running times — look for MIP stubs in jets and define a MIP correction
layer by layer

@ 1000 identified tracks per layer— calibration precision of 3-4%

@ Required luminosity per electronic module (HBU) at Z° pole:

Track segments in Z° — uds at 91.2 GeV

pb' for HBU calib

0 20 40 60
z half HCAL
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MIP Stubs at ILD - continued

@ Luminosity requirement for in situ calibration with MIP stubs from jets:

| | Luminosity at 91 GeV | Lumi. at 500 GeV |

layer-module to 3% to layer 20 1pb 1t 181
layer-module to 3% to layer 48 10 pb 1 201
HBU to 3% to layer 20 20 pbh 1 36!

@ For endcaps: muons from the beam halo might be used for calibration
(rates between 10 Hz/m? and 10 kHz/m? at full energy)
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The Answers in Summary
What level of precision is required?

@ Worse case scenario: uncorrected temperature variation during data
taking

@ Simulated as event by event coherent shifts with RMS=5%

@ Effect on single particle energy resolution: max 10% worsening

@ Effect on di-jet energy resolution: max 10% (5%) worse at 500 (91) GeV |

How do you monitor and maintain it?

@ Inter-calibration for calorimeter cells can be obtained during test beam
runs and transported to the operation condition of 'collider run’

@ ~ 6% uncertainty with both tested transport methods
@ Calibration offsets layer by layer measured using MIP stubs
@ No impact on hadron energy resolution from calibration transport
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The Answers in Summary - continued

If operation at the Z° pole is your strategy, how much data is

required?
@ A cell by cell MIP calibration is not necessary in situ

@ Average values for individual module layers with 3% accuracy from a data
set corresponding to 10 pb~* at the Z° pole, or to 20 fb~* at 500 GeV
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AHCAL Calibration: Monitoring

@ When applying test beam based calibrations to collider data, need to
monitor possible time-dependent variations due to

@ changed operating conditions (voltage, etc)

@ ageing effects
@ mechanical de-adjustments during handling

Monitoring methods
@ o i somsens
© LED system
o i
@ in-situ MIP calibration using 2o poas | 2 5
£ IXels | A 9958+ 282.8
track segments and hadron 150 8 oate
showers (see later) 100}~
sof— é
@ slow control reading of bias W ™ ]
V0|tages and temperature 10‘00‘12‘00 1‘4‘00 7600 1800 2000 3200 2400 7600
< am ADC channels

Angela Lucaci-Timoce LCWAO9 - Albuquerque - 29" September - 3™ October



