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Introduction

ILD detector

March 2009
Letter of Intent

International Detector
Advisory Group

(IDAG)

AHCAL answers

Calorimeter CALIBRATION:

how?

how do you monitor it?

how much data?

which precision?
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AHCAL Calibration: How?

From measured amplitude to energy in MIPs:

E [MIP] =
A

AMIP
· fresp

(

A
Apixel

)

where
A - measured amplitude in ADC counts

AMIP - cell by cell MIP scale
- predicted by simulation and verified with test beam data
- Estimated time to acquire sufficient statistics for entire ILD detector:

about 2 months→ too long (but we can use MIP stubs, see later)

fresp - SiPM response function (non-linear), measured apriori on test bench

Apixel - amplitude of a single fired photo-sensor pixel (from LED-induced
signals)
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AHCAL Calibration: How Much Precision?

Idea
Use ILD simulations of single hadrons and of jets

Induce deliberately mis-calibrations due to temperature fluctuations,
statistical precision of calibration factors, etc

Check the effects on energy resolution

Method
Consider mis-calibrations of the AHCAL energy scale with a random
factor following a Gaussian distribution with mean at zero

Rerun complete ILD reconstruction (including Pandora PFA algorithm)
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AHCAL Calibration: How Much Precision?
Single Hadron Resolution

Shoot K 0
L in ILD detector and reconstruct energy sum in ECAL+HCAL

Effects of coherent fluctuations (i.e. due to TEMPERATURE):
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HCAL inside coil → expect T variations only from endcaps (via cable
paths), if any. Worse realistic case: < 1◦ T variation

For ∼ 4%/K variation of SiPM response ⇒ ∼ 8% worse single particle
resolution at 100 GeV, if no T corrections applied
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AHCAL Calibration: How Much Precision?

Jet Energy Resolution

Use Z 0 → uds samples at
√

s = 91 GeV and at 500 GeV

Run complete ILD reconstruction chain (including Pandora PFA
algorithm)

4 scenarios studied in the Munich group:

i) Temperature/voltage fluctuations ⇒ global shift for all cells, on
event-by-event basis

ii) Imperfect intercalibration of ⇒ uncorrelated layer-wise
individual modules shifts

iii) Imperfect intercalibration of ⇒ uncorrelated cell-wise
individual cells shifts

iv) Imperfect calibration of detector ⇒ global shift for all cells,
energy scale constant for all events
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AHCAL Calibration: How much precision?
Jet Energy Resolution - continued

Worst case i: 5% RMS ⇒ 10% worse dijet energy resolution (can be
recalibrated in situ with LED system or MIP stub in hadronic)

Cases ii, iii: no significant effect

Case iv: large effect, but also shifted reconstructed dijet invariant mass
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AHCAL Calibration: Will it work?

Exercise with test beam data:
transport calibration to different temperature/high voltage
study energy resolution
can we find MIP tracks?

CERN data
"collider mode"

(reference)

T/U correction

Gain correction

FNAL data
"test beam mode"

2 methods to transport MIP calibration from FNAL to CERN conditions:

1) T/U calibration (instantaneous, but non-local):

A(T1, U1) = A(T2, U2) +
dA
dT

(T1 − T2) +
dA
dU

(U1 − U2)

2) Gain correction (local, but non-instantaneous):

A(T1, U1) = A(T2, U2) +
dA
dG

(G(T1, U1) − G(T2, U2))
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Transport of the MIP Calibration

Comparison between T/U calibrated FNAL and reference CERN sample

Before T/U correction:
Black: before transport

Red: UCERN = UFNAL
Entries  7255
Mean   −0.1478
RMS    0.1389
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After T/U correction:
Black: after transport

Red: UCERN = UFNAL
Entries  7284
Mean   0.05652
RMS    0.1212
Constant  11.5± 718.5 
Mean      0.00101± 0.04216 
Sigma     0.0009± 0.0785 
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Remaining 4% offset consistent with different muon beam energies
(32 GeV at FNAL, 80 GeV at CERN)

Results: shift = 4.2% , spread = 7.8%
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Transport of the MIP calibration - continued

Comparison between G calibrated FNAL and reference CERN sample

Relative difference
Black: all channels

Red: UCERN = UFNAL
Entries  7255

Mean   0.0576

RMS    0.1473

Constant  14.3±   839 

Mean      0.00115± 0.02884 
Sigma     0.00108± 0.07756 
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Results: shift = 2.9% , spread = 7.7%

Both methods are equivalent in terms of precision and consistent with
each other
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In Situ MIP Calibration

Collect all MIP stubs in pion runs to obtain layer by layer correction
factors to the MIP calibration after transportation

Method: look for isolated hits
which form MIP tracks in hadron
events

Fit amplitude of all tracks in a
layer → get most probable value
of energy loss ⇒ correction
factors
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Landau + Gauss fit:
MPV = 0.9938 ± 0.0175
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In Situ MIP Calibration - continued

CERN
CERN: layerwise Lan−Gau fit on cells with > 1000 entries
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FNAL - G correction
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FNAL_G: layerwise Lan−Gau fit on cells with > 1000 entries
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Average shift: 2.2%

Layers 13, 22: bad transport
coefficients, corrected with
in-situ calibration
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Impact on Hadronic Response
Residual from linearity of reconstructed hadron showers fully contained in
the AHCAL (8 GeV < E < 80 GeV)

BEFORE layer by layer in situ
calibration from MIP stub
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Clear agreement between
different calibration methods
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MIP Stubs at ILD

Even at Z 0 resonance, no channel by channel calibration within realistic
running times → look for MIP stubs in jets and define a MIP correction
layer by layer
1000 identified tracks per layer→ calibration precision of 3-4%
Required luminosity per electronic module (HBU) at Z 0 pole:
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MIP Stubs at ILD - continued

Luminosity requirement for in situ calibration with MIP stubs from jets:

Luminosity at 91 GeV Lumi. at 500 GeV

layer-module to 3% to layer 20 1 pb−1 1.8 fb−1

layer-module to 3% to layer 48 10 pb−1 20 fb−1

HBU to 3% to layer 20 20 pb−1 36 fb−1

For endcaps: muons from the beam halo might be used for calibration
(rates between 10 Hz/m2 and 10 kHz/m2 at full energy)
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The Answers in Summary

What level of precision is required?
Worse case scenario: uncorrected temperature variation during data
taking

Simulated as event by event coherent shifts with RMS=5%

Effect on single particle energy resolution: max 10% worsening

Effect on di-jet energy resolution: max 10% (5%) worse at 500 (91) GeV

How do you monitor and maintain it?
Inter-calibration for calorimeter cells can be obtained during test beam
runs and transported to the operation condition of ’collider run’

∼ 6% uncertainty with both tested transport methods

Calibration offsets layer by layer measured using MIP stubs

No impact on hadron energy resolution from calibration transport
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The Answers in Summary - continued

If operation at the Z 0 pole is your strategy, how much data is
required?

A cell by cell MIP calibration is not necessary in situ

Average values for individual module layers with 3% accuracy from a data
set corresponding to 10 pb−1 at the Z 0 pole, or to 20 fb−1 at 500 GeV
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BACK-UP SLIDES
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AHCAL Calibration: Monitoring

When applying test beam based calibrations to collider data, need to
monitor possible time-dependent variations due to

changed operating conditions (voltage, etc)

ageing effects

mechanical de-adjustments during handling

Monitoring methods
LED system

in-situ MIP calibration using
track segments and hadron
showers (see later)

slow control reading of bias
voltages and temperature

ADC channels
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2 pixels

1 pixels

0 pixels

3 pixels
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