# CALICE Tail-Catcher Muon-Tracker(TCMT) Preliminary Test Beam Results

### Kurt Francis NICADD/Northern Illinois University

For CALICE Collaboration



**ALCPG/LCWS MEETING** 

Albuquerque, NM

September 29, 2009 – October 3, 2009



1



- The CALICE Tail-Catcher Muon-Tracker
  - Goals:
    - Prototype ILC muon detector using SiPMs
    - Correct for leakage due to thin calorimeters
  - Test Beam needed to:
    - Study end of hadronic shower & validate simulations
    - Understand & address impact of coil
    - Understand TCMT in PFA framework
    - Achieve good  $\mu$  ID and control fake rates
- Preliminary Results from CERN
- Energy resolution as a function of calorimeter depth and improvements due to post coil sampling.

## **CALICE Tail-Catcher Muon-Tracker Prototype**

#### Mechanical Structure/Absorber

- "Fine" section (8 layers)
  - ~2 cm thick steel
- "Coarse" section (8 layers)
  - ~10 cm thick steel
- Engineered and assembled by Fermilab PPD
- 16 Cassettes:
  - Extruded Scintillator Strips
    - 5mm thick
    - 5cm wide strips
    - Tyvek/VM2000 wrapping
    - Alternating x-y orientation
  - Readout
    - WLS Fiber
    - SiPM photo detection
    - Uses common electronics (DESY) readout with CALICE HCAL
    - Uses common CALICE DAQ (Imperial college)



#### • Dimensions:

- Length (along beam) 142 cm
- Height 109 cm
- Weight ~10 tons

### **TCMT Cassette Components**



# **CALICE Calorimeters at Test Beam**

- ECAL
  - 30 active layers of silicon diode pad detectors with ~10,000 channels
  - tungsten absorbers with thickness of 1.4mm to 4.2mm
  - total thickness 24X<sub>0</sub> radiation length
- HCAL
  - Up to 38 absorbers (30 used in 2006) 2cm thick steel
  - Gaps instrumented with 0.4mm thick modules with high granularity core (3x3cm^2)
  - 4.5 interaction lengths
  - Rotating stage used for position and angle scans in 2007 run
  - During 2006 Run
    - Layers 1-17 all instrumented
    - Layers 19-29 every other layer instrumented
    - Total of 23 layers x 216 chan/layer = 4968 channels
    - 3.5 Interaction lengths
    - No movable stage
- CERN Test Beam Runs
  - 2006 August/September and October/November (discussed here)
  - 2007 June to August (still under analysis)
- FNAL Test Beam Runs
  - 2008 April/May with SiW ECAL and September with Scintillator ECAL at Fermilab
  - 2009 May with Scintillator ECAL at Fermilab

# **CALICE @ CERN Test Beam**



## **Current Analysis**

- The effect of TCMT and coil on leakage was studied
- Compared resolution of a calorimeter with a system with calorimeter, coil, and post coil sampling
- Used a subset of TCMT layers, leaving a gap equivalent to ~1.8 lambda to simulate magnetic coil
- Used CALICE October 2006 CERN data

# **CALICE Configuration, Oct. 2006**



Would like to compare Energy Resolution of : [ECAL + HCAL + n TCMT Layers] Extended to: [ECAL + HCAL + n TCMT Layers] + 1.8  $\lambda$  gap + remaining layers of TCMT (or same calorimeter configuration but post magnet gap sampled)

# **Conditions & Cuts**

- Conditions
  - Saturation correction applied to correct for non-linear nature of Silicon photomultipliers
  - No temperature correction
  - Pion beams
  - Sampling weights
    - Derived using least squares minimization procedure for the resolution
    - Five to eight weights used depending on the configuration
- Cuts
  - 0.5 MIP threshold
  - electrons rejected with Cherenkov
  - Double particle events rejected
  - Muons rejected by:
    - 1m x 1m veto counter behind TCMT
    - Energy sum cut (E of hits>10MIPs/total E < 0.02)</p>
    - Cut based on Low end tail -> MIP

### Effect of Cuts to Clean Pion Sample Full Detector



10

# **Allocation of TCMT Layers**



2 layers to calorimeter 9 layers for coil 5 layers post coil sampling

Example Configuration 8: <u>Closest to SiD depth</u> 8 layers to calorimeter 4 layers for coil 4 layers post coil sampling

| Layers of   | Sim. Coil | Sim. Coil    | End of<br>coil/ |           |  |
|-------------|-----------|--------------|-----------------|-----------|--|
| тсмт        | Thickness | Thickness    | First<br>Layer  | Layers in |  |
| Added to    | (cm)      | (interaction | Post-coil       | Post-coil |  |
| Calorimeter |           | lengths)     | Sample          | Sample    |  |
| 0           | 29.2      | 1.78         | 10              | 6         |  |
| 1           | 26.0      | 1.59         | 10              | 6         |  |
| 2           | 34.0      | 2.08         | 11              | 5         |  |
| 3           | 32.0      | 1.96         | 11              | 5         |  |
| 4           | 30.0      | 1.83         | 11              | 5         |  |
| 5           | 28.0      | 1.71         | 11              | 5         |  |
| 6           | 26.0      | 1.59         | 11              | 5         |  |
| 7           | 34.0      | 2.08         | 12              | 4         |  |
| 8           | 32.0      | 1.96         | 12              | 4         |  |
| 9           | 30.0      | 1.83         | 12              | 4         |  |
| 10          | 30.0      | 1.83         | 13              | 3         |  |
| 11          | 30.0      | 1.83         | 14              | 2         |  |
| 12          | 30.0      | 1.83         | 15              | 1         |  |

# **Minimization of Weights**

#### **Resolution was minimized such that:**

$$\chi^2 = (E_{beam} - \sum_{i=1}^N \alpha_i E_i)^2$$

# A unique set of weights was determined for each configuration.

| -                     |         |        |        |        |        |        |        |        |        |
|-----------------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
|                       | coil    |        |        |        |        |        | TCMT   | TCMT   | TCMT   |
|                       |         | ECAL   | ECAL   | ECAL   | HCAL   | HCAL   | Thin   | Thick  | post-  |
|                       | Config. | 1      | 2      | 3      | 1      | 2      | XCAL   | XCAL   | coil   |
|                       | 0       | 0.0089 | 0.0091 | 0.0133 | 0.0335 | 0.0811 | 0.0000 | 0.0000 | 0.2057 |
|                       | 1       | 0.0090 | 0.0091 | 0.0132 | 0.0334 | 0.0655 | 0.1604 | 0.0000 | 0.1810 |
|                       | 2       | 0.0089 | 0.0091 | 0.0132 | 0.0334 | 0.0631 | 0.1088 | 0.0000 | 0.2521 |
|                       | 3       | 0.0089 | 0.0091 | 0.0132 | 0.0334 | 0.0622 | 0.0809 | 0.0000 | 0.2421 |
|                       | 4       | 0.0089 | 0.0091 | 0.0132 | 0.0334 | 0.0615 | 0.0709 | 0.0000 | 0.2369 |
|                       | 5       | 0.0088 | 0.0091 | 0.0132 | 0.0333 | 0.0616 | 0.0624 | 0.0000 | 0.2306 |
|                       | 6       | 0.0088 | 0.0091 | 0.0132 | 0.0333 | 0.0613 | 0.0575 | 0.0000 | 0.2238 |
|                       | 7       | 0.0088 | 0.0091 | 0.0132 | 0.0332 | 0.0615 | 0.0547 | 0.0000 | 0.2981 |
|                       | 8       | 0.0088 | 0.0091 | 0.0132 | 0.0331 | 0.0613 | 0.0516 | 0.0000 | 0.2903 |
|                       | 9       | 0.0090 | 0.0092 | 0.0134 | 0.0335 | 0.0628 | 0.0466 | 0.0000 | 0.1070 |
|                       | 10      | 0.0089 | 0.0091 | 0.0133 | 0.0331 | 0.0613 | 0.0428 | 0.0980 | 0.2993 |
| 8429<br>9.29<br>8.025 | 11      | 0.0089 | 0.0091 | 0.0133 | 0.0332 | 0.0614 | 0.0410 | 0.1042 | 0.3242 |
|                       | 12      | 0.0089 | 0.0091 | 0.0133 | 0.0333 | 0.0616 | 0.0409 | 0.1021 | 0.4918 |



## **Energy Spectrum without and with TCMT**



Energy resolution calculated with Eres = statistical RMS/statistical Mean This is necessary to take into account the low end tail

### Energy Spectrum With Coil and Post Coil Sampling



# **Energy Resolution as a Function of Calorimeter Depth**

### Energy Resolution 20GeV π-



Red Triangles: Calorimeter Blue Squares: Calorimeter+coil+post coil sample

# **Improvement in Energy Resolution as a Function of Beam Energy**



\* Δ Eres= [Eres(w/coil) – Eres(cal. only)] / Eres(cal. only)

# **Summary**

- Detector performed well
- Analysis is underway and progressing
- Post coil sampling improves resolution for coil position from 4.5 to 6  $\lambda$ .
- At a depth of 5.5λ (the design thickness of the SID calorimeter), a tail-catcher improves energy resolution by about 6% for 20 GeV pions and 10% for 80 GeV pions.
- SiPMs show good potential for calorimetry