Effects of TPC Background on ILD Tracking Performance

Steve Aplin DESY

ALCPG '09 Albuquerque 2nd October 2009

IDAG Question

Q. Elaborate on the meaning of the information in Fig. 4.3-4. What are the plans to mitigate the loss of track efficiency with the background level? What is the sensitivity to beam halo, and at what level does it become problematic?

Input to Figure 4.3-4

Dan Peterson performed sophisticated studies on TPC hit response, and the effect of varying levels of random noise in the TPC on tracking efficiency. Tracking Software used was that used for CLEO which was a good well understood starting point.

Input to Figure 4.3-4

Dan Peterson performed sophisticated studies on TPC hit response, and the effect of varying levels of random noise in the TPC on tracking efficiency. Tracking Software used was that used for CLEO which was a good well understood starting point.

But the background was random - i.e. worst possible scenario

Full GEANT-4 Simulation (Mokka) of pairs background including realistic description of the forward region and the magnetic fields performed by **Adrian Vogel.**

Main background in gaseous tracker conversion of backscattering photons

Tracks from the IP, rare, but mostly low pt curlers

Recoil tracks from neutron-proton collisions (CH4)

Not included:

Beam Halo Muons

Beam gas interaction

Synchrotron radiation from beam delivery

Particle losses in extraction line

Beam dumps

Mokka hits in the TPC (overlay of 100BX)

Overall value stays very well below 1%

n-p scattering gives negligible contribution

though modelling of neutrons is notoriously difficult

Pairs are the dominant source background

There is a very big difference between background which can be distinguished from signal, and that which can't, even if it kills a large part of your signal

e.g. filling up the TPC with 10% noise occupancy, or removing 10% of all hits from tracks, will present two very different problems to the pattern recognition

GEANT4 Simulation – Mokka

- To properly simulate the pairs background a more complete description of the forward region was implemented in Mokka
- For physics studies a detector description was used which included a 10MeV cut made in the Tracking volume
- Non uniform Solenoid with anti-DID
- Much improved treatment of low energy particles pt < 10MeV in the TPC – dedicated step limitation

Background Simulation

- 2000 BX of pairs background simulated using Guinea pig
- These were then simulated using Mokka to produce a set of independent bunch-crossings
- This sample is then selected from to produce the required number of bunch crossings needed to overlay with the physics event
- The correct z shifting needs to be applied according to the TPC drift velocity, conservatively estimated at 4 cm μs⁻¹

ttbar vs Pairs Background

- Mokka provides the space point at which a track cuts the half radii of the pad rows (Left)
- These are then smeared according to the formula below. This is used as a parameterisation of the actual creation of space points from the pad charges (Right)
- This of course is a simplified
 parameterisation
- Mokka has been adapted to deal with very low momentum particles < 10MeV

	$\sigma_{r-\phi}/\mu{ m m}$	$\sigma_z/\mu m$		$\sigma_{r-\phi}/\mu{ m m}$	$\sigma_z/\mu m$
VTX	2.8	2.8	FTD	5.8	5.8
SIT/SET	7.0	50.0	ETD	7.0	7.0
TPC	$\sigma_{r\phi}^2 = 50^2 + 900^2 \sin^2 \phi + ((25^2/22) \times (4/B)^2 \sin \theta) z \mu \mathrm{m}^2$				
	$\sigma_z^2 = 40^2 + 8^2 \times z \mu \text{m}^2$				

- A search is made within pad rows for hits which are within the given hit separation criteria in rphi and z from previous studies these are presently taken as 2mm in rphi and 6mm in z
- A nearest neighbour clustering is then performed on these hits
- For small clusters of hits, 3 or less, the hits are merged and there average position taken for the hit
- Larger clusters (micro-curlers) are identified, and are removed, i.e. not presented to the track finding

- A search is made within pad rows for hits which are within the given hit separation criteria in rphi and z from previous studies these are presently taken as 2mm in rphi and 6mm in z
- A nearest neighbour clustering is then performed on these hits
- For small clusters of hits, 3 or less, the hits are merged and there average position taken for the hit
- Larger clusters (micro-curlers) are identified, and are removed, i.e. not presented to the track finding

ttbar event @ 500GeV overlayed with 150 BX pairs background

- A search is made within pad rows for hits which are within the given hit separation criteria in rphi and z from previous studies these are presently taken as 2mm in rphi and 6mm in z
- A nearest neighbour clustering is then performed on these hits
- For small clusters of hits, 3 or less, the hits are merged and there average position taken for the hit
- Larger clusters (micro-curlers) are identified, and are removed, i.e. not presented to the track finding

ttbar event @ 500GeV overlayed with 150 BX pairs background

mean background hits per event	265000
mean physics hits per event	23100
mean hits removed per event	254000
mean physics hits for pt>0.2GeV removed per event	290
mean physics hits for pt>1.0GeV removed per event	90

ttbar event @ 500GeV overlayed with 150 BX pairs background

Tracking

Structure of Tracking Package

Tracking

Nominal Background 150 BX

TPC Tracking Efficiency (Good Tracks) vs $\cos\theta$ (p>1GeV and NHits>30)

~3 x Nominal Background 500 BX

TPC Tracking Efficiency (Good Tracks) vs Cos (p>1GeV and NHits>30)

100 ttbar events @ 500 GeV

Simulation studies clearly demonstrate the robustness of TPC Tracking operating in ILC beam conditions

many thanks to LC-TPC, F. Gaede and T. Hartin