HLRF S1-Global Preparation KEK S. Fukuda

Content

Time Schedule of S1 Global in KEK
Achieving Goal of S1-global
HLRF and LLRF in KEK
PDS Layout for S1 Global

ALCPG09 S1 Global (S. Fukuda)

1

İİL



Time Schedule and Contents of S1 Global

ALCPG09 S1 Global (S. Fukuda)

2

Proposed S1 Global Schedule (By Hayano)

Procedure of Cavity with jacket (By Hayano)

Module C (INFN module)

8 weeks

2009.01~2010.02

Module A (KEK module)

9 weeks

2010.03~2010.04

Connection of Module C (INFN module) and Module A (KEK module) in the Tunnel

6 weeks

2010.05~2010.06

ALCPG09 S1 Global (S. Fukuda)

Contents of Test in S1 Global (By Hayano)

First Cooling and Test

1: Low Power Measurement of an individual cavity of 8 cavities

Q-value, Frequency, Coupler adjustment, Tuner adjustment, Response for piezo, Micro phonics, Mechanical vibration and HOM 4 weeks (2010.06-07)

3 Sets of NWA and CT (KEK, DESY, FNAL), Computer Control

2. : Thermal Load Measurements (static)

Second Cooling and Test

- Lorentz Detuning measurements, comparison, correction survey 1: Preparation of auto-measurements software by LLRF group 4 weeks (2010.10)
- 2: Achievement of average maximum accelerating field and investigation of stability and failure rate after long operation. 4 weeks (2010.11)
- 3: Thermal Load Measurements (static and dynamic) 2 weeks (2010.12)

ALCPG09 S1 Global

(S. Fukuda)

4 : Demonstration of DRFS System

1 week(2010.12)

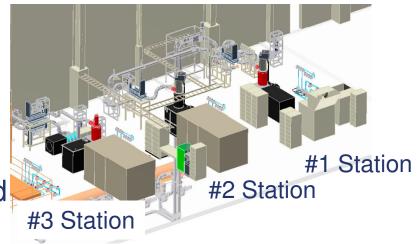
5

1 week (2010.07)

Purpose (Achieving Goal) of S1 Global

- SC Cavity Test under the Internal Collaboration
 - \rightarrow Cavity Evaluation of 3 Region (US, EU and Japan)
- Achieving the Average Maximum Accelerating Field
 - → Cavity Evaluation of 3 Regions (US, EU and Japan)
 - → HLRF introduces Q adjustment mechanism and power adjustment mechanism to support this purposes.
- Demonstration of DRFS

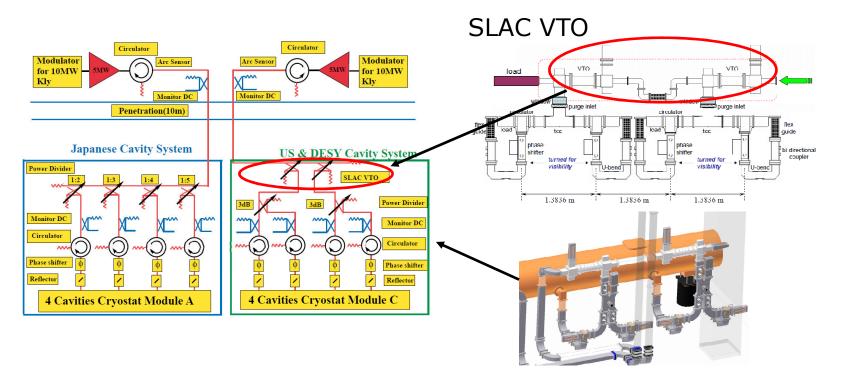
20/4/2009


HLRF &LLRF Configuration

ALCPG09 S1 Global

(S. Fukuda)

HLRF Status in KEK


- Three RF Stations will be available at the period of S1 global.
 - #1 2.5 MW available: mainly used for coupler processing
 - #2 5MW available
 - #3 10MW from Horizontal MBK
- In order to have an efficient program for cavity evaluation, 2 RF stations will be used.
- Individual coupler processing and cavity processing, two 4-successive runs will be possible.
- QI adjustment by phase-shifter and reflector after circulator, and a variable tap-off hybrid will be used for power variation.

STF Building Klystron Gallery

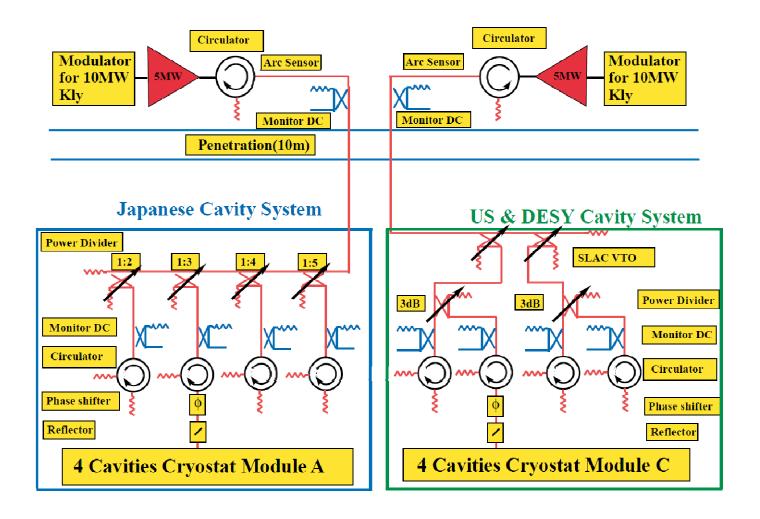
ALCPG09 S1 Global (S. Fukuda)

Possible PDS Scheme for S1 global

For S1 global, KEK cavities are tested using KEK's PDS and EU&US cavities are tested using SLAC VTO. All power dividers enable us to vary the power including the SLAC VTO (0-100%) and QI is also adjustable.

20/4/2009

İİĻ

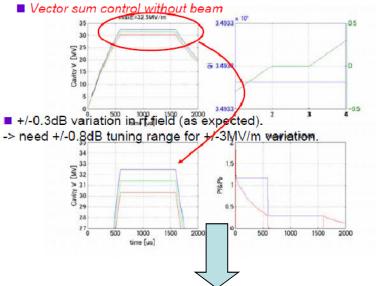

Proposed Layout for S1 Global

(S. Fukuda)

20/4/2009

Coupler Processing and Cavity Survey

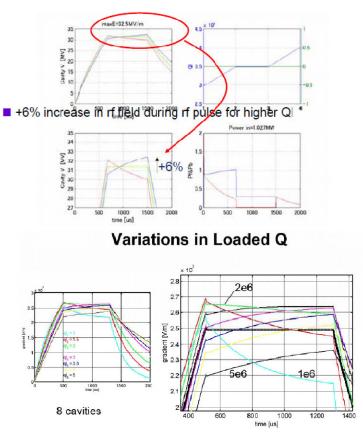
ALCPGU9 51 GIODAI (S. Fukuda)


Variation in Loaded Q

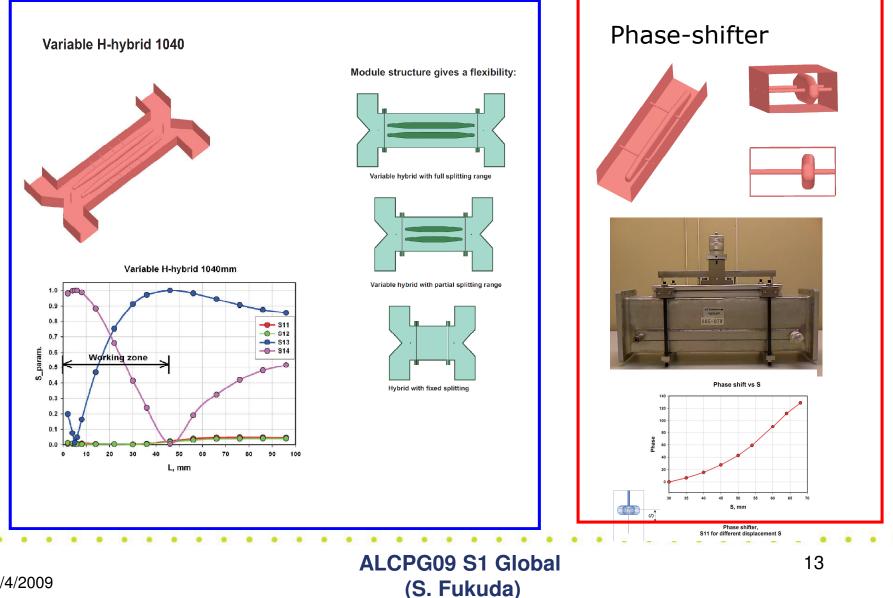
Rf distribution and cavity field gradient

(simulation assumption)

IL


- 4 cavities are driven.
- All cavities have same loaded Q (no variation).
- Rf distribution to cavities are -6.3dB, -6dB, -6dB, -5.7dB. (+-0.3dB)

By adjusting the QI, flat cavity V Is achieved. By adjusting the power Level, maximum cavity field gradient Of each cavity will be expected.


QI variation and cavity field gradient

- ■All cavities have same rf distribution (-6dB).
- Loaded Q variation of the cavities are -15%,0%,0% and 15%. (+-15%)
- Nominal loaded Q is 3.49e6.
- Vector sum control without beam

ALCPG09 S1 Global (S. Fukuda)

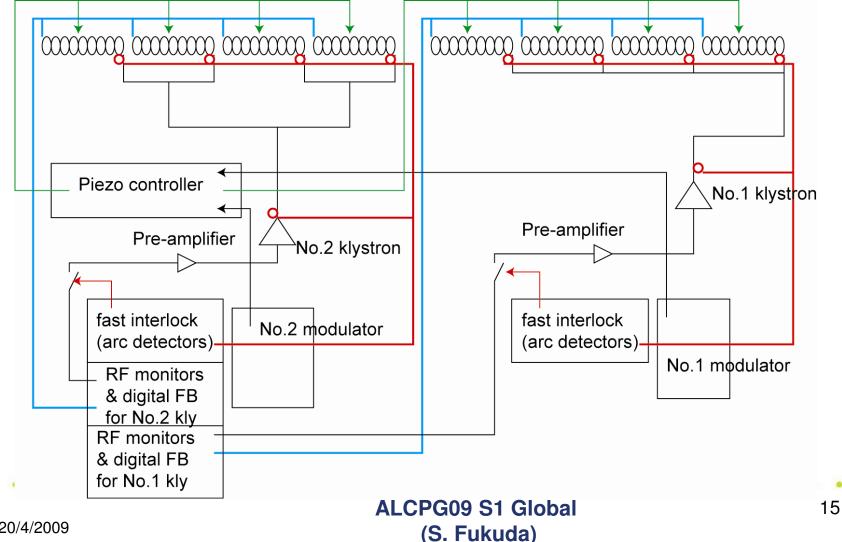
Phase shifter and Variable Hybrid developed iii ···in KEK·

20/4/2009

Parameters:

Max. Power (no reflection)	2 MW
S11 renge	0 - 0.97
S12 rerenge	1 - 0.26

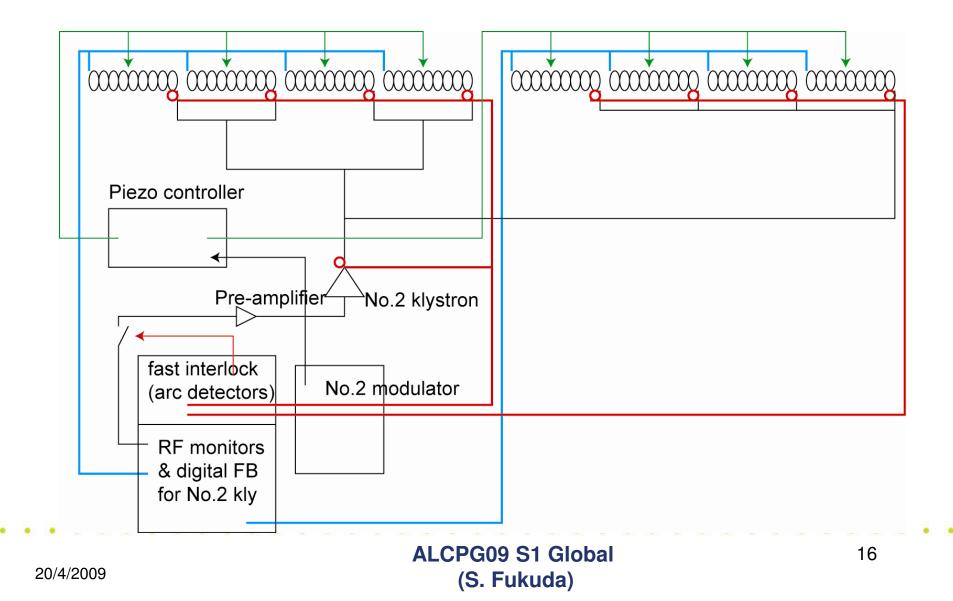
S-parameters vs angle 1.1 1.0 0.9 8.0 0.7 so aram 0.4 0.3 0.2 -0- S11 0.1 0.0 -100 80 100 .80 -40 Angle, dgr


Refirctor,

ALCPG09 S1 Global (S. Fukuda)

Global S1 1st stage

- Each 4-cavities is driven by a klystron (in order to reduce the conditioning time).
- Digital IIrf controls are located near No.2 klystron.
- Only fast interlock (MPS) system will be located at No.1 klystron.

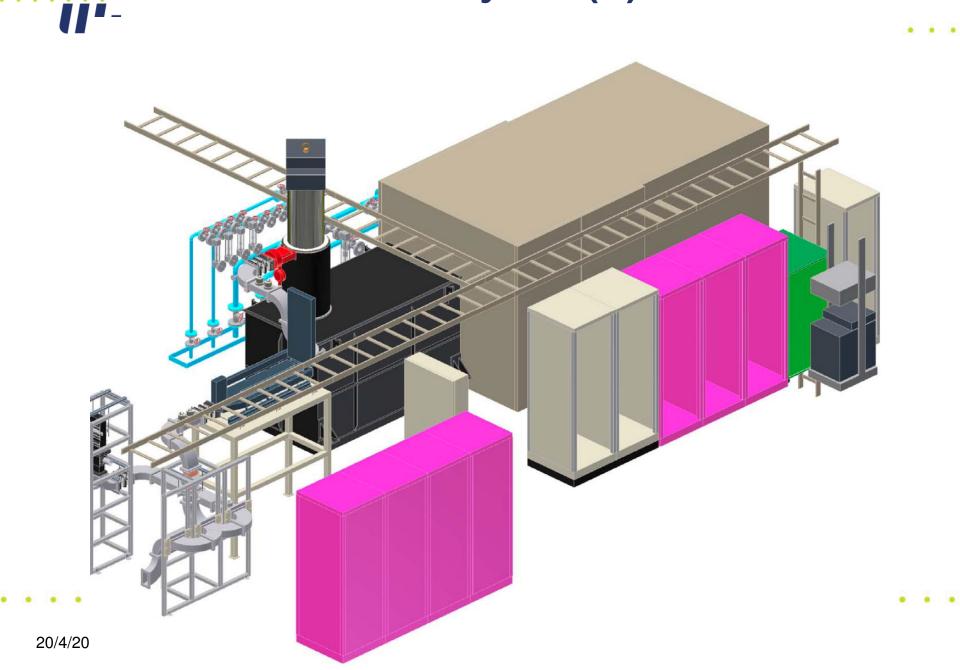


20/4/2009

Global S1 2nd stage

All the cavities are driven by No.2 klystron.

Rack layout for Global S1


Total 7 racks will be located near No.2 klystron

		rack #1	rack #2	rack #3	rack #4	rack #5	rack #6	rack #0
	height (mm)							
40	1778	connectors					connectors	
39	1733.55	to cavity group					connectors	
38	1689.1		connectors 1	connectors 2	connectors 3	connectors		
37	1644.65		(roof)	(roof)	(roof)	Connectors		
36	1600.2						oscilloscope3	
35	1555.75	Timing						
34	1511.3							
33	1466.85	riming		RF switch				
32	1422.4		VSWR interlock	RF SWILCH				
31	1377.95						oscilloscope2	
30	1333.5					Display2		
29	1289.05				downconveters			
28		oscilloscope1						
27	1200.15		PLC	Display1			connectors	
26	1155.7							Display2
25	1111.25							
24	1066.8	connectors -						
23	1022.35				10	NIM PIN for #2	powermeter x3	
22	977.9				IQ mod. #2			
21	933.45	powermeter						
20	889	×3	NIM interlock	NIM Arc				
19	844.55							
18	800.1				NIM clock2		NIM clock4	
17	755.65					NIM clock3		
16	711.2	IQ mod. #1 Fan					piezo controller2	
15	666.75							
14	622.3		connectors	500 W amp. For				
13	577.85	NIM clock1		#2	connectors	connectors	connectors	
12	533.4							
11	488.95							
10	444.5							
9	400.05							
8	355.6		cPCI #1		CPCI mon1	CPCI #2	cPCI mon2	piezo controller1
7	311.15	Synthesizer		power supply				
6	266.7	o ynthooizon		perior copping				
5	222.25							
4	177.8							
3	133.35							
2	88.9							
1	44.45							
100.0		ಜನಾಗಿ ಗಳು ಹಾ	চাইনে নেইবর কেন্দ্র নেইবন কেন্দ্র	555.00 N.S.C. 25. 25.00. 19550		মার্কন ক্রিয় মার্কন ক্রিয় সার্কন		ana kani uan (an (
ALCPG09 S1 Global								17

20/4/2009

(S. Fukuda)

Rack layout (2)

ilr

Digital LLRF system

Digital LLRF system consists of cPCI, downconverters and IQ modulator.

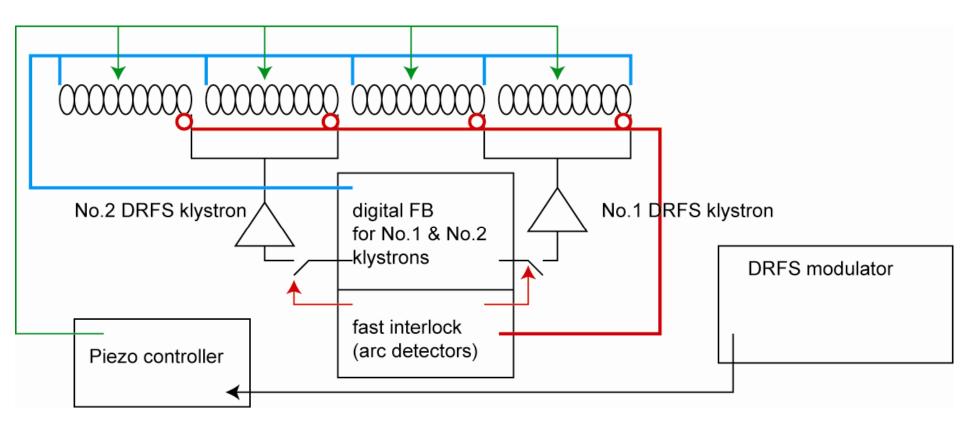
Ethernet Custom FPGA board External HOS 0 0 : Mezzanine card of the commercial DSP board CPU board I/O board JTAG backplane 10 16bit-ADCs and 2DACs + 16 bits 16 bit; 16 bits 16 bit 6 bit 2Rocket IO PROM DSP board 40 MHz clock Spectrum Barcelona PFM (4x C6701) 40 MHzTrig 10ADC+2DAC+1FPGA MRF-Ø3 (Hirose) ow-profile coaxial multiple contact connector FPGA boar Downconverters & IQ modulator EXILINX VIRTEX-II PGA 2DACs CPG09 S1 Global 19 (S. Fukuda)

DRFS Demonstration (For 1 week)

ALCPG09 S1 Global (S. Fukuda)

20

DRFS Demonstration test is approved for 1 week period. 1 unit of DRFS is Planned be manufactured in FY2009. Hopefully another 1 unit will be made Until the S1 global period to show the 2 units DRFS demonstration.


Two units DRFS demonstrate the feasibility of basic DRFS system. For the case of 1 unit DRFS 1 unit system for 4 cavities of low power option is demonstrated.

ALCPG09 S1 Global (S. Fukuda)

Global S1 3rd stage

digital LLRF systems (cPCIs) will move from the klystron gallery to the tunnel.

Fast interlock will be also located at the tunnel.

- Preparation of S1 global testing including the time schedule is reported.
- Purpose of S1 global is to demonstrate SC cavities are operated with average maximum accelerating field with the internal collaboration.
- In order to fulfill this purpose, HLRF introduce QI and power adjustable way using reflector and phase-shifter. This will help for all cavities to achieve the maximum performance.
- PDS plan for the S1 global is shown in this report.
- SLAC VTO will be planed to be introduced for EU and UA cavity system
- LLRF plan for S1 global is also reported