e-cloud studies at LNF

T. Demma INFN-LNF



Plan of talk

Introduction

New feedback system to suppress horizontal
coupled-bunch instability.

Preliminary analysis of the instabilities

— Coupled bunch

— Single bunch

Clearing electrodes for dipoles and wigglers
Summary



Electron cloud at DAFNE

e* current limited to 1.2 A by strong horizontal instability

Large positive tune shift with current in e* ring, not seen in e
ring

Instability depends on bunch current

Instability strongly increases along the train

Anomalous vacuum pressure rise has been oserved in e* ring
Instability sensitive to orbit in wiggler and bending magnets

Main change for the 2003 was wiggler field modification



New DAFNE e* Transverse feedback
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of the Horizontal Instability

e+ instability behavior switching
solenmds off (blue) & on (red)
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» Switching off the solenoids installed in the positron ring

the grow rates of the e+ instability does not change

Solenoids installed in free field regions strongly reduce
pressure but have no effect on the instability

Instability sensitive to orbit in wiggler and bending magnets
Most unstable mode -1



PEI-M Tracking simulation

K.Ohmi, PRE55,7550 (1997),K.Ohmi, PAC97, pp1667.
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eSolve both equations of beam and electrons simultaneously,
giving the transverse amplitude of each bunch as a function of
time.

eFourier transformation of the amplitudes gives a spectrum of the
unstable mode, identified by peaks of the betatron sidebands.



Input parameters for DAFNE simulations

Bunch population N, 2.1; (4.2 x1019)
Number of bunches n, 120; (60)
Missing bunches Ngap 0

Bunch spacing Loeplm] 0.8;(1.6)
Bunch length o, [mm] 18

Bunch horizontal size o, [mm] 1.4

Bunch vertical size o, [mm] 0.05

Chamber Radius R[mm] 40

Hor./vert. beta function B,[m]/B,[m] |4.1/1.1
Hor./vert. betatron tune Vx/Vy 5.1/5.2
Primary electron rate d\/ds 0.0088

Photon Reflectivity R 100% (uniform)
Max. Secondary Emission Yeld A, 1.9

Energy at Max. SEY E.[eV] 250

Vert. magnetic field B,[T] 1.7




Mode spectrum and growth rate
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Mode spectrum and growth rate
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Simulation of single-bunch instability

« Simulations were performed using
CMAD (M.Pivi):

Tracking the beam (x,x’,y,y’,z,8) in a
MAD lattice by 1st order and 2" (2nd
order switch on/off) transport maps

MADS8 or X “sectormap” and “optics”
files as input

Apply beam-cloud interaction point
(IP) at each ring element

Parallel bunch-slices based
decomposition to achieve perfect
load balance

Beam and cloud represented by
macroparticles

Particle in cell PIC code 9-point
charge deposition scheme

Define at input a cloud density level
[O<r<1] for each magnetic element
type

Input parameters for CMAD

Beam energy E[GeV] 0.51
circumference L[m] 97.588
bunch population N, 2.1x10™
bunch length o, [mm] 12
horizontal emittance €,[um] 0.56
vertical emittance €, [um] 0.035
hor./vert. betatron tune Q,/Q, 5.1/5.2
synchrotron tune Q, 0.012
hor./vert. av. beta function 6/5
momentum compaction o 0.019




Emittance growth due to fast head- tall instability
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The interaction between the beam and the cloud is evaluated at 40 different

positions around the DAFNE e+ ring for different values of the electoron cloud
density.

The threshold density is determined by the density at which the growth starts:

P =2%x10% m™



Tracking through the DAFNE ring optics
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- | DAFNE MADX model
\ | matches quite well beam
| measurements (C.Milardi)
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*Tracking the beam (x,x’,y,y’,z,d) in the DAFNE MADX lattice by 2nd order

transport maps.
*Applying beam-cloud kicks in dipoles and wigglers only: assume e-cloud in

field free Drift regions is mitigated by solenoids.
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Emittance growth: solenoids on
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Clearing Electrodes for DAFNE
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Clearing Electrodes Installation: Wigglers
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Mechanical design: A.Battisti, R. Sorchetti, V. Lollo (LNF)



Clearing Electrodes Installation: Diﬁ%
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Electrodes Field and e-Cloud build-up
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Simulation unsing POSINST code
of electron cloud build-up and
suppression with clearing
electrodes. ILC DR positron:
assuming one single 6 km ring.

Electron density (eIm'3}

clearing electrodes none
clearing electrodes +10
clearing electrodes +100V
clearing electrodes +1000V
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Summary

*Two separate feedback systems for the same oscillation plane work
in perfect collaboration doubling the damping time, keeping 1+ MAX
as higher as possible

*Coupled-bunch instability has been simulated using PEI-M for the
DAFNE parameters. Preliminary results are in qualitative agreement
with grow-damp measurements.

Single-bunch instability has been simulated with CMAD tracking the
beam through a realistic ring optics model. Preliminary results
indicate a threshold well above the current estimated e-cloud
density for DAFNE (more detailed study is needed)

*The mechanical drawings of clearing electrodes for DAFNE is
complete. Installation is foreseen for the next machine stop (end of
2009). Work is in progress to estimate the impedance budget.

*More work is needed to simulate a more realistic model of beam
chembers in the coupled bunch instability code (taking into account
also the effect of clearing electrodes)



