
CERN and **DESY** Test Beam Facilities

Presented by Erik Ramberg on behalf of CERN (Horst Breuker) (and DESY (Ingrid Gregor)

ALCPG09

30 September, 2009

The PS East Area

Beam Characteristics

The PS East Area

Т7	The T7 beam is a secondary beam that delivers secondary particles up to 10 GeV/c at a production angle of 0 degrees.
Т8	The T8 beam is a primary beam that delivers primary protons to the DIRAC experiment. Normally the beam momentum is 24 GeV/c.
Т9	The T9 beam is a secondary beam that delivers secondary particles up to 15 GeV/c at a production angle of 0 degrees.
T10	The T10 beam is a secondary beam that delivers secondary particles up to 7 GeV/c at a production angle of 61.6 milliradians.
T11	The T11 beam is a secondary beam that delivers secondary particles up to 3.5 GeV/c at a production angle of 149.2 milliradians.

Nov 18 2008 LCWS2008 Lucie Linssen

PS Physics since April 30 th

PS Experiments :

DIRAC (T8), start May 14 th, # exotic Atoms
observed today is as in 2008
CLOUD (T11), Facility / Infrastructure ready mid Oct.
nTOF (since May 26), Target commissioned; Beam
characterized; now on capture XSECT 56 Fe
ATRAP, ASACUSA, ALPHA smooth start-up June 8

PS Testbeams :

Irradiation (T7);

T9, T10 going through the users as planned

14-August-2009 2009 PS Fixed Target Programme

Version 3.0

Colour code: green = PS/SPS-exp; purple = LHC-exp; dark blue = Outside exp; yellow = not allocatable or Machine Development

	P1			P2			P3					P4				P5				P6				
	35		35			35					35					35				32				
		;	30 Apr			4 Jun (9	9 Jul			13 Aug					17 Sep				22 Oct		
			4 Jun			9 Jul	13 Aug					17 Sep				22 Oct				23 Nov				
Т7	Setup						ŀ		Irradiation				Irradi <mark>ati</mark> on				Irradiation							
	7		35			35			30)	5		35				3 <mark>5</mark>				32			
Т8		Setup DIRAC			DIRAC			DIRAC				DIRAC				DIRAC			DIRAC					
		21 2 1			35		35			L	35			3 <mark>5</mark>			32							
Т9	Setup	T2K-ECAL		12N-CUAL		CALICE RPC		ď	COMPASS CALO				MICE		OPERA Bricks		COMP EC			VIPIX	NA	62	PE	BS
13	7		35		14	17	4	2	18		4	7		3	13	8	1	45	5	9	15	5	1	17
	Setup	ALICE	C	ALICE	ALICE	ALICE	CMS	1	ALICE	RD51	MICE	N	MICE			ATLA <mark>S</mark>	ATLAS	CALICE	ALIDE	ALICE	ALIDE	ALI	CE	ALICE
T10		PMD	MN	/IEGAS	TOF	VHMPID	всм		TOF	CALICE	EMR-ADS	EM	IR-CA	L	•	3088 <mark>IP</mark>	SOSSP-	MMEGA <mark>S</mark>	VHMPIO	TOF	TOF	HP	TD	VHMPID
	7	18	2	15	14	13	8		15	10	10		14		11	10	5	15	7	8	7	1	6	9
T11	Setup				CLO	UD	CLOUD								CLOND			CLOUD						
	7		35		18	17	7		:	35				;	35			35					32	

SPS/PS-Coordinator: Horst Breuker E-mail: SPS.Coordinator@cem.ch phone: 73777 (ext. +41 22 767 3777) mobile: 164212 (ext. +41 76 487 4212)

The SPS North Area EHN1 EHN2 (COMPASS) CERN ECN3 ECN3 (NA48) **BA80 BA81** (ps building) (ps building) TCC2 access TCC2 CCC targets (underground) wage © 2005 DigitalGrobe © 2005 TeleAtias

The EHN1 beams

Beam	Characteristics
H2	High-energy, high-resolution secondary beam.
	Alternatively can be used to transport: attenuated primary beam of protons, electrons from γ -conversion, polarized protons for Λ^0 decay, enriched low-intensity beam of anti-protons, or K ⁺
	Main parameters: P _{max} = 400 (450) GeV/c, Acc.=1.5 μSr, Δp/p _{max} = ±2.0 %
H4	High-energy, high-resolution secondary beam.
	Alternatively can be used to transport: primary protons, electrons from γ -conversion, polarized protons for Λ^0 decay, enriched low-intensity beam anti-protons, or K^+
	Main parameters: P _{max} = 330 (450) GeV/c, Acc.=1.5 μSr, Δp/p _{max} = ±1.4 %
H6	High-energy secondary beam.
	Main parameters: P _{max} = 203 GeV/c, Acc.= 2.0 μSr, Δp/p _{max} = ±1.5 %
Н8	High-energy, high-resolution secondary beam.
	Alternatively can be used to transport an attenuated primary proton bean Main parameters: P _{max} = 400(450) GeV/c, Acc.= 2.5 μSr, Δp/p _{max} = ±1.5 %
	H2

lov 18 2008 LCWS2008 Lucie Linssen 12

SPS Physics since May 11 th

SPS Experiments:

COMPASS (M2) May 11 th; pi -, pi +, p; planned muon and Drell-Yan tests NA61 (SHINE) (H2) testrun June; now high statistics for "T2K" and Pierre Auger Obs.; then p-p e-scan NA62 (P0): Commission RICH400, LeadGlass, MUV; tests for STRAW and GTK to come NA63 (crystal) (H4): Rad. Int. thin foils done, pub.; spin-flip in crystalline fields to come OPERA (CNGS) since May 27 th, running smooth (ICARUS later this year)

SPS Testbeams: switch between the users as planned

24-August-2009 2009 SPS Fixed Target Programme

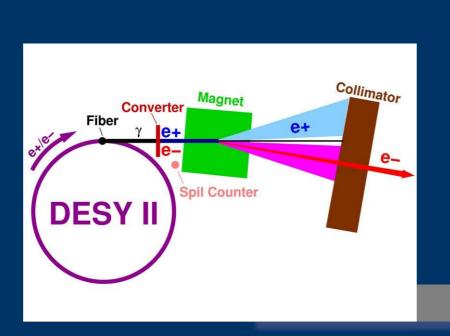
Version 3.0

Colour code: green = SPS-exp; purple = LHC-exp; dark blue = Outside exp; yellow = not allocatable or Machine Development

	P1	P2	P3	P4	P5	P6		
	35	35	35	35	35	32		
	30 Apr 4 Jun	4 Jun 9 Jul	9 Jul 13 Aug	13 Aug 17 Sep	17 Sep 22 Oct	22 Oct 23 Nov		
T2 -H2	NA CMS CREAM	CMS WCALO CMS		NA61 35	NA61 CREAM NA61	NA61 MICLEON 24 8		
T2 -H4	NA CMS	sma sma STRD RD51	15	CALO 7 2 11	BOAL 20	RD51 CMS LHCf ECAL 13		
T4 -H6	0 5 5 7 3		ATLAS EUDET OFFE	CFI SILC EUDET ATLAS	RD42 ATIAS ATLAS ATLAS BCM LUCID FP420 7 7 13 8	ManaPla MMEGASICM		
T4 -H8	™ 3DSi 3 16 I	ATLAS ATLAS MDT Roma	GOSSIP UA9	HAND!	UA9 mm	RP AMS		
T4 -P0	NA NA62 Setup 10 10	NA62 NA62 7 7 9 19	28	35	29 6	NA62 10 22		
T6 -M2	COMPASS 3 17	COMPASS 35	COMPASS 35	COMPASS 35	COMPASS 35	C <mark>OMPASS</mark> 32		
CNGS	CNGS 3	CNGS 35	CNGS 35	CNGS 35	CNGS 35	CNGS 32		

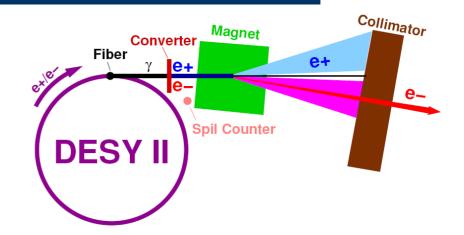
SPS/PS-Coordinator: Horst Breuker E-mail: SPS.Coordinator@cern.ch

phone: 73777 (ext. +41 22 767 3777) mobile: 164212 (ext. +41 76 487 4212) Comments:


- no comments

PS / SPS Test Beam Users

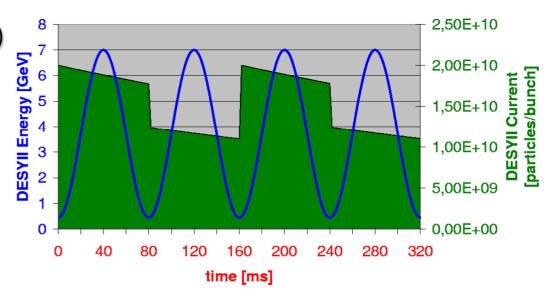
(list of Projects finished by now; ALL initial goals achieved)


- T9 : T2K ECAL, CALICE, MICE-AD3
- T10 : ALICE PMD, MMEGAS, TOF, VHMPID, MICE-CAL
- H2: CMS CASTOR, CREAM, CMS HCAL
- H4: CMS BCM, ECAL, SITRD, RD51, DREAM, CALET
- H6: CERF, MonoPix, MediPix, ATLAS MMEGAS and BCM, RD42, LUCID, STRAW, EUDET
- H8: ATLAS 3DSi, GOSSIP, TOTEM, ATLAS TGC, MDT-MPI

DESY Test Beam Facilities - Status and Plan

DESY Test Beam

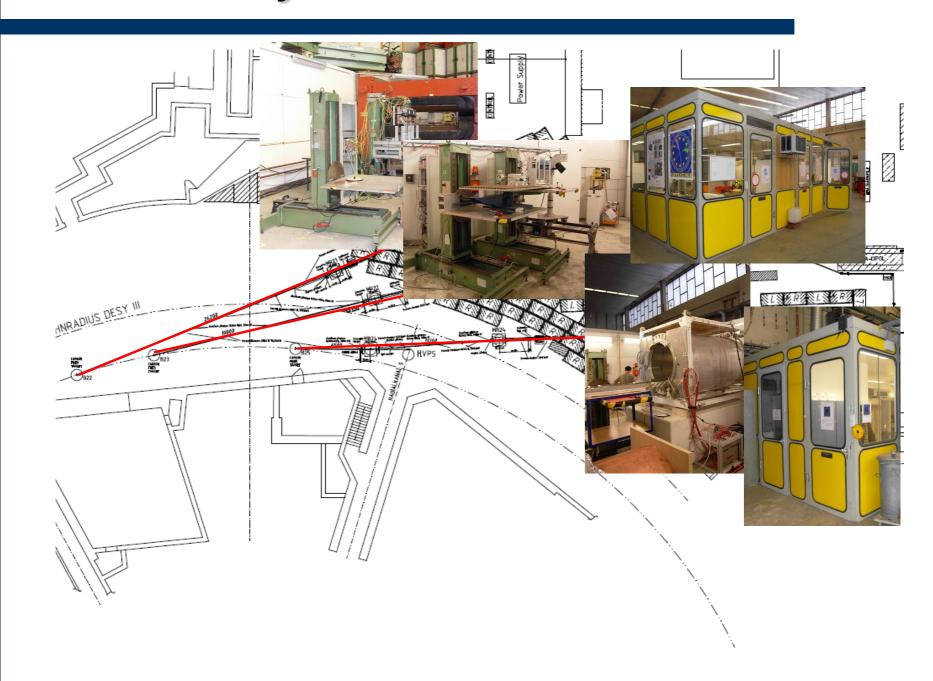
- DESY provides three test beam lines with 1-6 GeV/c electrons
- Very simple system, no beam optics, only momentum selection via magnet.
- Bremsstrahlung beam generated by a carbon fibre in the circulating beam of the electron/positron synchrotron DESY II.



- Photons are converted to electron/positron pairs with a metal plate.
- Beam is spread out into a horizontal fan with a dipole magnet. Collimator cuts out final beam.
- DESYII: Mainly injector for DORIS and PETRA (synchrotron sources).
 - For DORIS: DESYII delivers every second cycle (160ms) single bunches with about 1*10⁹ electrons (3*10⁹ positrons) at 4.5GeV
 - For PETRA: DESYII delivers every fourth cycle (320ms) single bunches with 3*10¹⁰ electrons (1*10¹⁰ positrons) at 7GeV
 - Test beam runs in PETRA mode
- The revolution frequency is 1 MHz, the RF frequency 500 MHz, and the bunch length around 30 ps. The average radius is 46.6 m

DESY Test Beam

Ideal DESY II Cycle (no extraction)


Rates	Target					
Energy	3mm Cu	1mm Cu				
1 GeV	~2.2 kHz	~ 0.5 kHz				
2 GeV	~4.6 kHz	~1.1 kHz				
3 GeV	~5.2 kHz	~1.3 kHz				
4 GeV	~4.4 kHz	~1.1 kHz				
5 GeV	~2.8 kHz	~0.5 kHz				
6 GeV	~1.5 kHz	~0.2 kHz				

- The rates are influenced by many parameters.
- Ideally, the maximum rate around 1 kHz
 (3 GeV, 3mm Cu convert, Collimator ca.
 5mm x 5mm, DESY II maximum energy at
 7 GeV, no beam extraction, no DESY III ramp).
- Few hundred Hertz are realistic

In practice is the maximal event rate around 2 kHz. (3 GeV, 3mm Cu convert, Collimator ca. 5mm x 5mm)

Testbeam Layout

Facilities for Test Beam User

- All three testbeam lines have
 - Interlock systems
 - Magnet control
 - Patch panels with preinstalled cables
 - Gas warning systems
 - Fast internet connection (DHCP)
 - Trigger scintillators
- The user can ask for:
 - Translation stages
 - Premixed gases
 - Superconducting Magnet (1T)
 - Beam Telescopes:
 - MVD Telescope
 - EUDET Telescope
- The users typically bring:
 - Your Data Acquisition incl. computers
 - Trigger scintillators

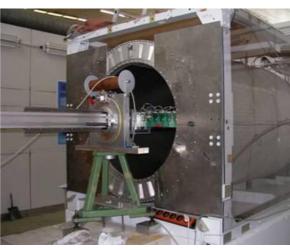
Test Beam Area 21

Recently refurbished -> New home of EUDET telescope

- Pixel beam telescope:
 - 6 layers of Monolithic Active Pixel Sensor (MAPS) detectors
 - DEPFET and ISIS pixel detectors for validation
 - DAQ system
 - Demonstrator telescope in use since summer 2007

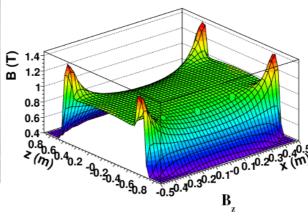
More information

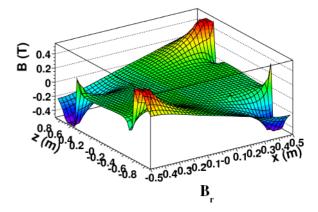
WWW.EUDET.ORG


Testbeam 22: ZEUS Telescope

- Location of ZEUS MVD telescope (build in 1998)
- Telescope parameters:
 - 300 μm thick single-sided Si strip sensors
 - Each plane with 2 sensors prependicular to each other
 - Strip pitch: 25μm
 - Readout pitch: 50μm
 - Active area: 32x32 mm²
 - Trigger window: 8x8 mm²
 - DAQ was upgraded to EUDET like system
- Plans for next years:
 - keep telescope running
 - improve software

Testbeam 24: EUDET





Large bore magnet:

- 1Tesla, Ø≈85 cm, standalone He cooling, supplied by KEK
- infrastructure(control, fieldmapping, etc.) through EUDET
- Magnet fully instrumented at DESY and ready for use

Users in the Last 5 years

- HERA Upgrades:
 - ZEUS-MVD,
 - Hermes-Recoil Detector (Silicon and SiFi)
- ILC R&D groups:
 - CALICE (HCAL, ECAL, DigiHCAL, BeamCAL)
 - ILC-TPC, SiTRA, SiTPC
 - Mimosa, ISIS, DEPFET
 - Polarimeter
- LHC R&D groups:
 - LHCb
 - ATLAS LUCID, ATLAS ALFA
- Medipix
- OPERA

Availability and Summary

- DESY test beam is running throughout 2009 and 2010 except January
- Machine study weeks every 6 weeks planned -> detailed schedule available
- Users can apply for beam time through DESY test beam coordinators -> up to three weeks possible, longer terms negotiable

You can apply for test beam time at DESY

testbeam.desy.de

Or contact: testbeam-coor@desy.de

- DESY provides three test beam lines with 1-6GeV/c electrons
- Very simple system, no beam optics, only momentum selection via magnet
- Perfect facility for proof of principle studies, efficiency studies and also resolution studies
- Infrastructure simple and flexible