Proposal for the End Station Test Beam (ESTB) at SLAC

John Jaros

ALCPG09 Albuquerque September 30, 2009

End Station Test Beam (ESTB) Proposal Will Restore Test Beams at SLAC

- * There is a Long History of Linear Collider studies at ESA and FFTB
 - Final Focus feedback studies
 - Beam Energy Spectrometers
 - MDI, Collimator Wakefields, Beam Pickup
- * Test Beam Activities Have Been Interrupted by Installation and Operation of LCLS, SLAC's X-ray Laser.
- * Proposed Test Beam Facility is a Unique HEP Resource
 - World's only high-energy primary electron beam for large scale Linear Collider MDI and beam instrumentation studies
 - Exceptionally clean and well-defined secondary electron beams, secondary hadron beams, and photon beams available for detector development and calibration for LC, SLHC, Super B, and Particle Astro
 - Huge experimental area, existing DAQ and conventional facilities, and historically broad user base

ESA Test Beam Provides Electrons/Hadrons up to 13.6 GeV, from single particles to full beam intensity

Kick 13.6 GeV LCLS beam to ESA 5 Hz, 2 x 10⁹ e^{-/} pulse primary beam
Clean secondary electrons/positrons p<13.6 GeV, 0.1/pulse to 2 x 10⁹ e^{-/}pulse
Secondary hadrons

~1 π / pulse < 12 GeV/c

Secondary Particle Yields

LC Beam Instrumentation, MDI, Detector R&D

Calibrate Anita with Full Beam into Ice

Ideal for LC Detector R&D

- •LC beam timing—precisely known arrival time
- •Ultra-clean, known momentum electrons for ECal studies
- •Tagged photon beam possible
- ~12 GeV/c hadrons for tracker, vertex detector studies. Multiple scattering negligible at these momenta.
- •Hadrons suitable for Hcal studies at the low and intermediate energies which dominate ILC jets.

ESTB Stage I Proposal

- * Construct kicker magnets and vacuum chamber for BSY
- * Update PPS System and install new beam dump for ESA
- * Update MPS and Controls as needed
- * Schedule: Ideally install Summer 2010, maybe 2011

Use LCLS Kicker Magnets in BSY

Primary Electron Beam Properties

Energy **Repetition Rate** Charge per pulse Momentum spread rms Bunch length rms Emittance rms ($\gamma \varepsilon_x \gamma \varepsilon_y$) Spot size at waist ($\sigma_{x,v}$) Momentum dispersion η and η' Drift space available for experimental apparatus 60 m Transverse space available 5 x 5 m for experimental apparatus

13.6 GeV 5 Hz 0.15 to 0.6 x 10¹⁰ (1 nC) e-<0.058% 280 μm (4,1) x 10⁻⁶ m rad ~10 μm

Lots of room for apparatus

ESA Experimental Area

ESA Infrastructure

Available Instrumentation

Trigger counters; Halo veto counters; High resolution beam hodoscope; Particle ID (Cerenkov, TOF, shower counter); Small, high field solenoid; sturdy support table with remote movers

Cranes

15 and 50-ton cranes available

Secondary Electrons and Positrons

Inserting a thin foil in the transport line to ESA, and using the beamline as a spectrometer, creates a clean secondary electron/positron beam over the full range of energies (<13.6 GeV/c) and a wide range of intensities down to ~1/pulse.

Production Rate from Foil

NAL ACCELERATOR LABORATOR

Attenuate up to Factor 10⁶

Secondary Electron Beam Properties

NATIONAL ACCELERATOR LABORATORY

Page 10

Photon Beam Possible

Clean electrons plus tagging system provides photon beam capability

ESTB Stage II Hadron Production

Add Be target, beam dump, analyzing magnet, momentum slit, and quadrupole doublets to produce a secondary hadron beam in ESA. Production angle = 1.5° and Acceptance = $10 \ \mu sr$

ESTB Stage II Hadron Production

Secondary Hadron Beam Properties

Energy 0.1–12 GeV 0.1–10 π/ nC Particles per pulse 5 Hz Bunch repetition rate Precise beam trigger Yes rms x, y spot size 1-2 mm Momentum analysis ∆p/p ~ 1% 5 m, 5 m, 15 m X,y,z space available Rate for p, K, µ $0.1-0.01/\pi$

Beam Properties at Detector Plane

ESTB Proposal Submitted to DOE

SLAC Test Beam Conclusions

- * SLAC is proposing to restore test beam capability to ESA, making use of pulses borrowed from LCLS.
- * Unique high energy primary electron beam will allow continued studies of LC beam instrumentation and MDI.
- An extremely clean electron/positron beam can be delivered over all the available energies (<13.6 GeV) and a very wide range of intensities, suitable for detector R&D.
- * A hadron beam is also planned, with energies up to 12 GeV, suitable for tracker, vertex detector, and calorimeter R&D.
- * Beam could be available early 2011.

