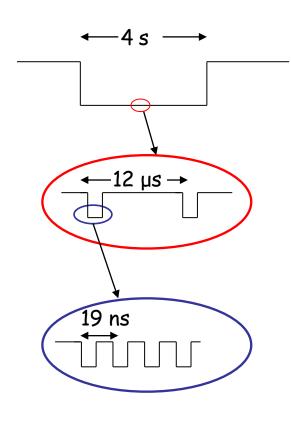

f the Americas (28 Septembe	er 2009 - 04 October 2009) - Mozilla Firefox		
<u>T</u> ools <u>H</u> elp			
http://ilcagenda.linearcollider.org/se	essionDisplay.py?sessionId=19&slotId=0&confId=3461#2009-09-30	☆ ・ Google	
k Search 🚾 Batavia Weather 🚼	Google Calendar 📄 Meson Test Beam Faci 🎂 Fermilab imapserver2 💠 Fermilab Telephone Di		
h · ∳ ╬ · 🙉 · 🎰 🖒 Booki	marks+ 🖂 + 🔦 AutoLink + 📔 AutoFill + 🌽 📵 alcpg09 📵 program		🔦 🔻 🔵 ejran
he ÷			
ibution List Time Table			
	Wednesday, 30 September 2009		
	[45] Introduction and Status of Fermilab test beam facility by Dr. Erik RAMBERG (Fermi National Accelerator Laboratory) (Trailblazer: 08:30 - 08:50)		Sslides
)	[46] Proposal for a SLAC end station test beam by John JAROS (SLAC) (Trailblazer: 08:50 - 09:05)		
	[47] Status of Asian test beam facilities by Katsushige KOTERA (Shinshu University, Faculty of Science,) (Trailblazer: 09:05 - 09:20)		
	[48] European test beam facilities by Dr. Erik RAMBERG (Fermi National Accelerator Laboratory) (Trailblazer: 09:20 - 09:35)		
	[54] ATF and Beamline Instrumentation Testing Plans by Nobuhiro TERUNUMA (KEK) (Trailblazer: 09:35 - 09:50)		S slides
	Thursday, 01 October 2009		
	[50] Vertex Detector Test Beam Issues by carlos MARINAS (valencia) (Trailblazer: 13:30 - 13:50)		S slides
j	[51] Tracking Detector Plans for Test Beam by Dr. Ron SETTLES (Max-Planck-Institut fuer Physik) (Trailblazer: 13:50 - 14:10)		
	[52] ILC Calorimetry in Test Beams by Dr. Lei XIA (Argonne National Laboratory) (Trailblazer: 14:10 - 14:30)		
	[53] Muon Detector Test Beam Plans by Dr. Paul RUBINOV (Fermilab) (Trailblazer: 14:30 - 14:50)		
	[49] 2nd ILC Test Beam Workshop information by Roman POESCHL (Trailblazer: 14:50 - 15:00)		

The Status of Fermilab's Meson Test Beam Facility

Erik Ramberg
Fermilab

30 September, 2009 ALCPG09


Main Injector Extraction

Extraction of beam from Main Injector:

- Load 1 batch from Booster to the Main Injector
- The batch length ranges from 0.2 to 1.6 μsec in length Full batch equals 2E11 protons
- A fraction of the beam is resonantly extracted in a slow spill for each Main Injector rotation

Spill options available at MTest

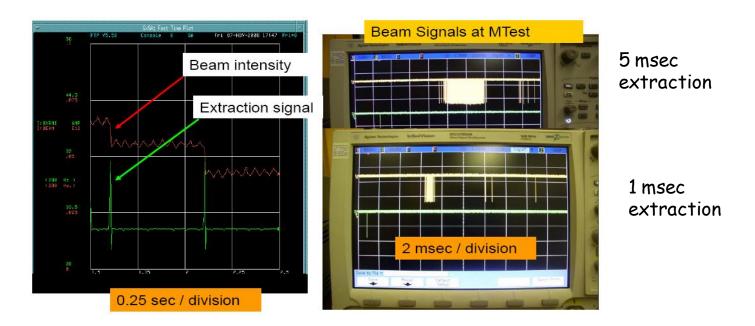
• Daily hours: 04:00 to 18:00

Spills per min: One 4 second spill/minute, or

Two 1 second spills/minute

• # Pulse trains: ~80,000 'batches'/second

(1 microsecond train, followed by

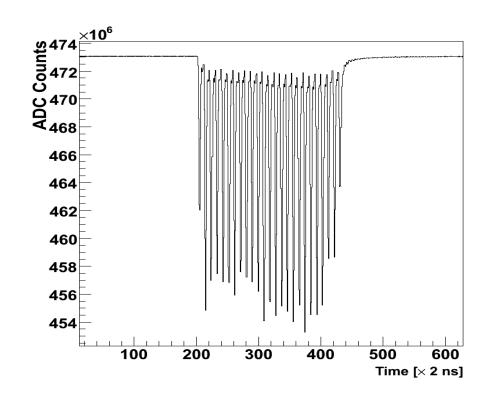

11 microsecond void)

• # Pulses: from 5-60 'bunches' per 'batch'

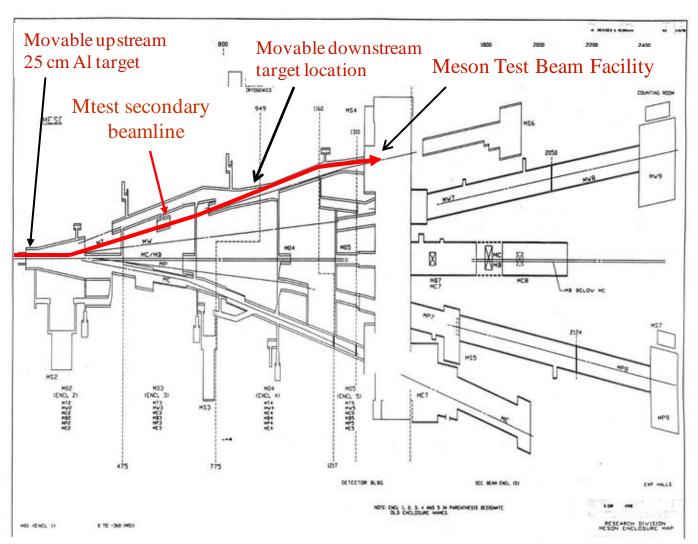
(each bunch is 19 nsec long)

Millisecond pulsed extraction

First Pings to MTest



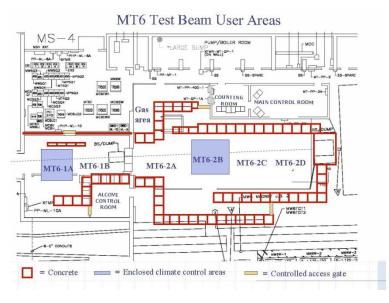
The Accelerator Division has installed pulsed quadrupole extraction hardware that can deliver beam within 1 to 5 millisecond short spills, or 'pings'. Several of these pings can be delivered within the assigned 1 second spill time.


Uniformity of Beam Delivery

The Airfly collaboration (T988)
has built a DAQ that can
resolve the bunch spacing
of beam arrival (19 nsec)
within the entire
macroscopic 4 second spill

The population distribution is relatively uniform in each batch, as shown here

Beam Delivery to MTest User Facility


Proton Mode: 120 GeV protons transmitted through upstream target

Pion Mode: 8-66 GeV beam tuned for secondaries from upstream target

Low Energy Pion Mode: 1-32 GeV beam tuned for secondaries from downstream target

User Facility

Spacious control room

Signal and HV cables

Gas delivery to 6 locations

4 station MWPC spectrometer

Two motion tables

Beam Rates and Electron Content

Measured rates* without lead scatterer

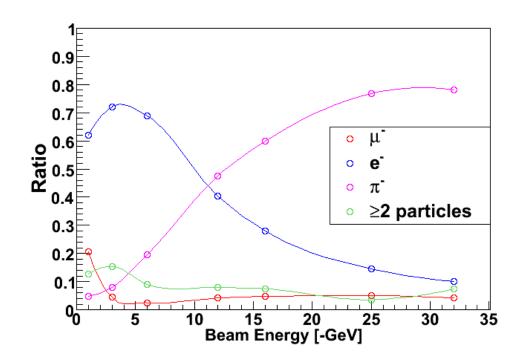
Beam Energy (GeV)	Rate at Entrance to Facility (per spill)	Rate at Exit of Facility (per spill)	%Pions, Muons**	% Electrons**
16	132,000	95,000	87%	13%
8	89,000	65,000	55%	45%
4	56,000	31,000	31%	67%
2	68,000	28,000	<30%	>70%
1	69,000	21,000	<30%	>70%

Measured rates* with 1/4" lead scatterer

Beam Energy (GeV)	Rate at Entrance to Facility (per spill)	Rate at Exit of Facility (per spill)	%Pions, Muons**	% Electrons**
16	86,000	59,000	100%	0%
8	31,000	18,000	98%	2%
4	5,400	1,300	74%	15%
2	4,100	250	<30%	>70%
1	4,900	120	<30%	>70%

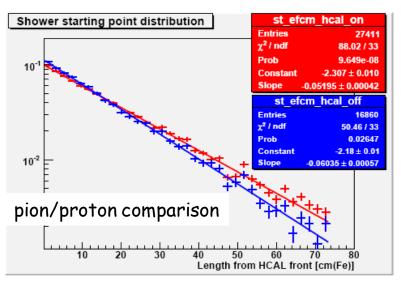
*Rates here are normalized to 1E11 at MW1SEM

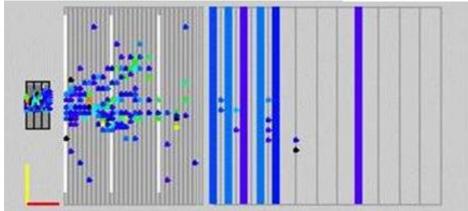
Beam Delivery for CALICE


- The CALICE experiment (T978) has been the most comprehensive detector system to be installed at MTest and has summarized their results for beam composition.
- The Fermilab Accelerator Division has created beam tunes for CALICE as follows:

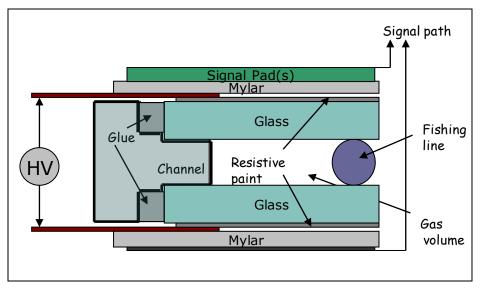
Negative

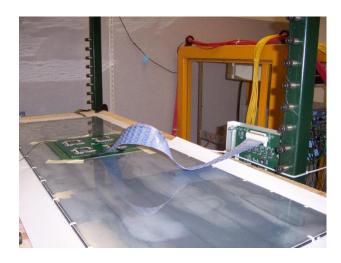
1,2,3,4,6,8,10,12,15,20,30 GeV


Positive


32 GeV (high rate muon mode), 120 GeV (proton mode)

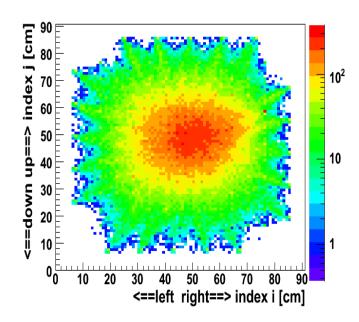
CALICE runs continue to be analyzed





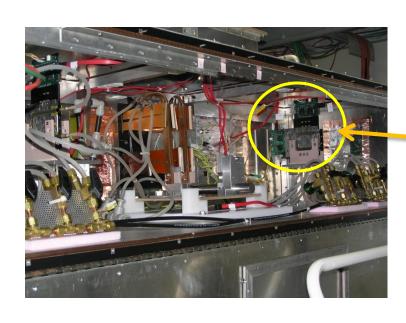
Next step for CALICE

- Exchange the active layers of the AHCAL with the DHCAL ones.
- Go for the final test beam campaign


cassettes with resistive plate chambers and GEM are being built and tested

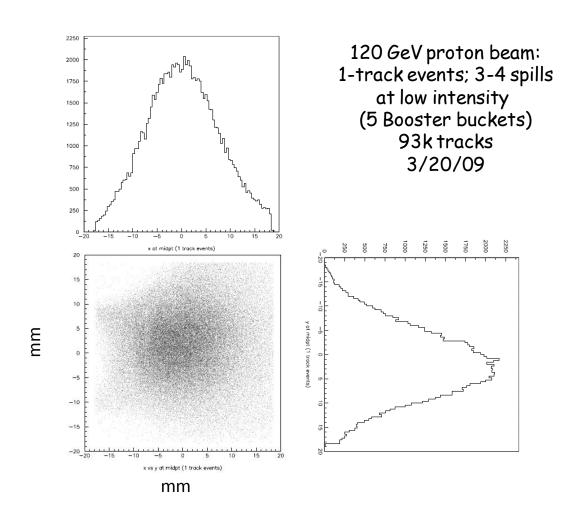
→ Compare technologies for ECAL / HCAL with data from the same test beam

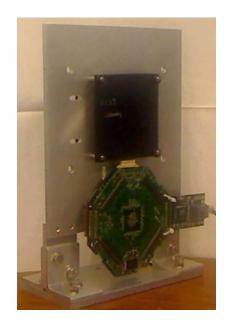
expected to be ready by end of 2009 for installation in absorber frame


Muon beam at MTest

- Can maximize muon flux by running high intensity at 32 GeV, and inserting 2.5 meter beamstop just before the user area.
- Broad-band muon flux can be delivered at >5 kHz over a square meter, as shown by CALICE

2 New Pixel Tracker telescopes in MTest

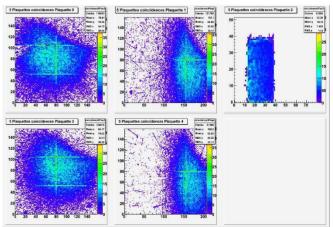

BTeV/PHENIX SENSOR TELESCOPE:



- Sensors are spares from BTeV project, read out with FPIX chip
- Pixel size is 50 x 400 micron²
- Total active area per X-Y station is 6x6 cm²
- Two stations currently, which should give 6 micron resolution

Beam spot (last quads off)

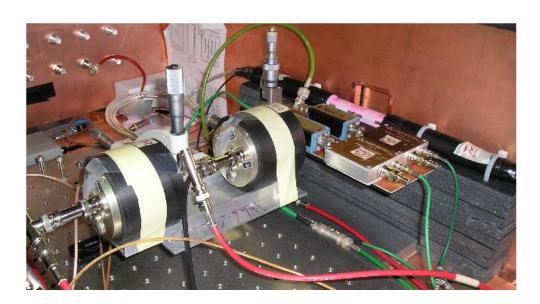
New CMS Sensor Pixel Telescope



Sensors are B-grade, but functional at low intensity.

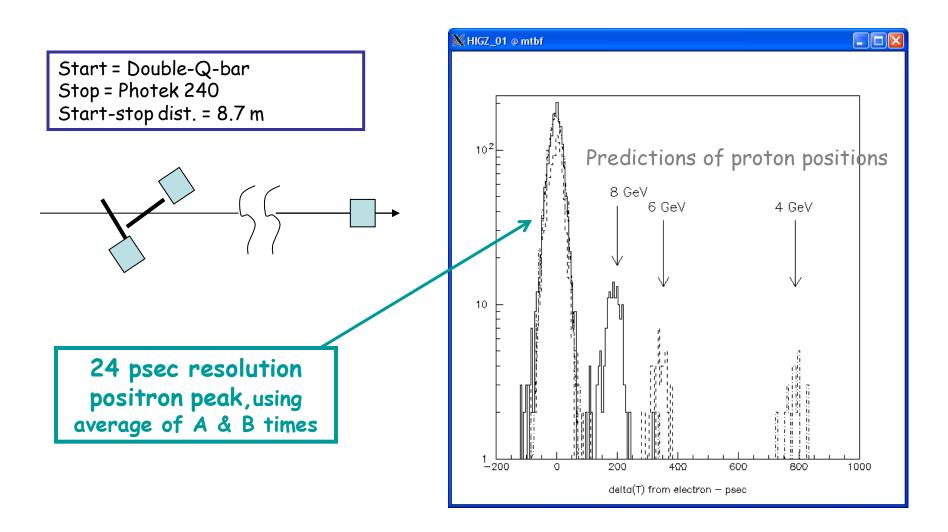
Overlap area is 2 cm x 2 cm

4 stations of 100x150 μ m² pixels gives 4 μ m resolution

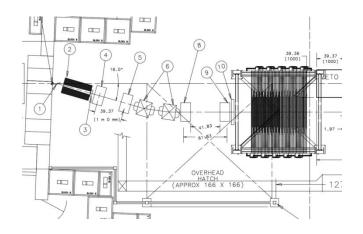

Clever vertically integrated DAQ, called "CAPTAN", has node processing boards and data conversion boards. Horizontal connectivity for output. Multithreaded application software running on Windows.

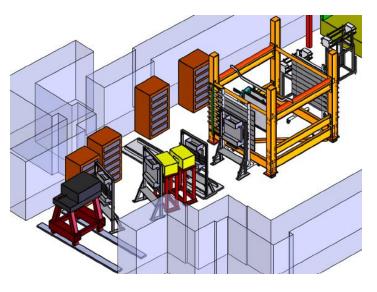
Fast Timing Detectors at MTest

- Use Photek 210 (10 mm area) and 240 (40 mm) devices
- Several different configurations tested in last run
- In-line configuration gives astonishing 6 psec resolution with the 240 device

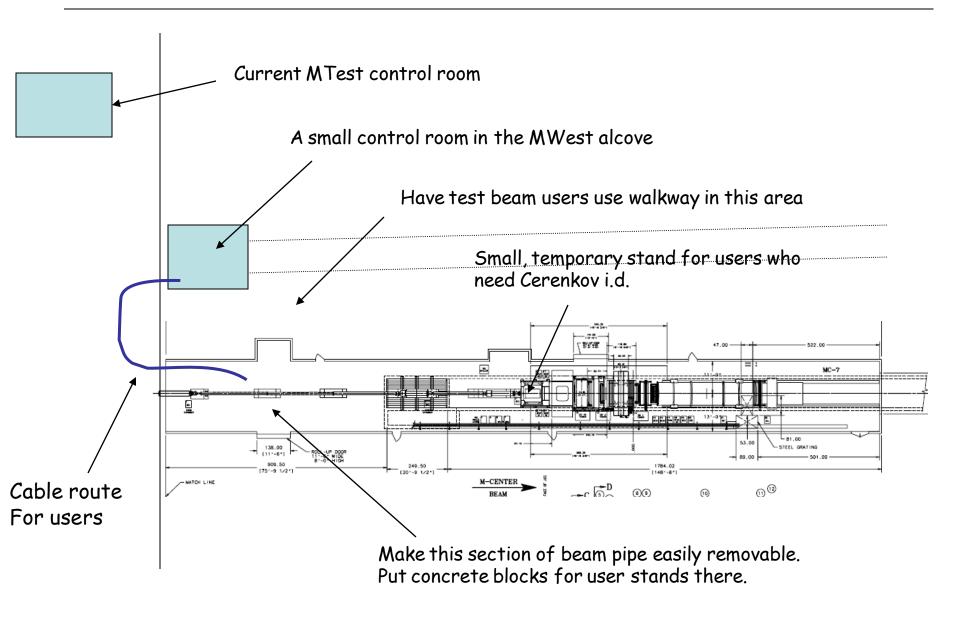

Configuration with quartz bars at Cerenkov angle minimizes

material at first measurement position

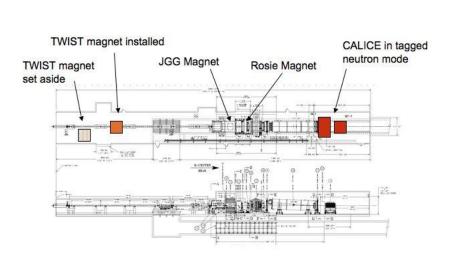

Extreme Time-of-Flight System

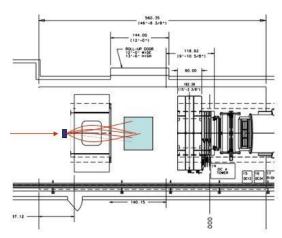


We can measure momentum of a high-energy proton using this system.


Tertiary 300 MeV/c Beamline for MINERVA

- The MINERVA experiment requested space to create a new tertiary beamline that could deliver pions down to 300 MeV/c momentum.
- The Particle Physics Division and Accelerator Division have agreed to help and are proceeding on installation.
- Full tracking and TOF will allow for momentum measurement and particle i.d.
- Target station rolls away for other users.
- The full spectrometer will be tested in November, 2009




A proposal for a test beam area in MCenter

A possible future program at MCenter

- MIPP experiment performs measurements with updated tracking and a repaired JGG magnet.
- Use the MIPP apparatus to create a tagged neutron facility.
- Import a large bore solenoid for TPC tests
- Use the MCenter spectrometer to simulate jet physics for advanced calorimetry.
- The status of a future run of MIPP and MCenter as a test beam will be reviewed Oct. 9

Creating a 'jet' in the Jolly Green Giant

Programs possible at MCenter

Summary

- The MTest facility continues to support a large variety of advanced detector tests
- The beamline is quite versatile, delivering secondary beams from 1 to 64 GeV, and a primary beam of 120 GeV protons. Electrons are dominant at low energies. Muons can be selected for with a beam stop.
- A new tertiary beam is being developed, which should deliver tagged pions down to 300 MeV/c.
- Two new pixel telescope systems have been created for the facility, with resolutions of 5-10 microns.
- A new TOF system has been tested, with a resolution of 24 psec.
 Individual measurements on a 4 cm MCP/PMT show 6 psec resolution
- A proposal is being studied at Fermilab to support test beam activities in the MCenter beamline, perhaps in conjunction with the MIPP experiment.