Development of the DAQ software
for the technical prototype:

Status & Outlook

Valeria Bartsch UCL
David Decotigny LLR
Tao Wu RHUL
Andrzej Misiejuk RHUL

Overview over the task
- DOOCS software used as framework-

http://tesla.desy.de/doocs/doocs.html

Object Oriented Application Program Interface

RPC |Shared Mem| TINE | CA

pest-ec) Name
e Service
(Foxd

Middle Layer
Server

VME

hardware

User
Interface

Program
Interface

Middle
Layer

Hardware
interface

Overview over the task

Host PC

DOOCS
GUIs & steering

Detector

DIF Unit

Detector

DIF Unit

Detector

DIF Unit

Detector

DIF Unit

DAQ software to steer whole system
(especially needed in test beams):

e store all data needed in runs, connections
* make connections to hw & configure it
 control & change the state of the hw

e deliver interfaces for experts & shifters

Task Overview

e Done:

— ENS naming service understood and working on a
distributed system

— ODR device server & well tested: reading and
writing

— LDA emulator

— Implementation of error handling

— GUIs

Task Overview

« Being done now
— Data handling - Configuration/Device/Data DB
— C&C device server
— ODR state machine

 Not yet, needs h/w development
— LDA device server
— DIF device server
— Full state machine

e.g.
ECAL
Slab

Hardware interface T

DIF

* ODR layer first accessible layer
* ODR ready since last summer

— Demonstrator for the ODR with a LDA
emulator shown at the Manchester meeting

PC

Driver

DOOCS
hardware
interface

DOOCS

Overview over the ODR Interface

e cOmmunication
between different
parts of DOOCS
by RPCs
 configuration
files used to find
different parts of
the system

DAQ PC

ODR

&)

ODR

_ Control Interface)
1 Sockets

>
—> | store to disk
>

DOOCS
device server

}.

NPC

Control Room PC

[GUIs

~N

ENS

I Rpclnaming servic

.

ODR, LDA and DIF device server
- envisaged connection with DOOCS -

ODR driver

|

e.g.
ECA

TOTTTTRTTTTTRATITom
ARLLERRRRE ARt

DIF

¢

ODR

device servel

!

L DA
evice serve

I

DIF

LDA
Op}o

O

device servel

a different socket for each device server instance:

e 1 ODR socket,
e 4 LDA sockets,
e 32 DIF sockets

— ODR driver needs to detect from where signal is

coming and where signal is going

Op'to
ODR

PC

Driver
A

DOOCS
hardware

interface
A

DOOCS

ODR, LDA and DIF device server
- hardware, firmware, driver solutions -

How to implement scenario the ODR driver, ODR firmware,
hardware:

 Firmware: can easily distinguish between upstream (LDA/DIF
data) and ODR data

— Firmware needs to be tweaked a little for this

 ODR driver: can look at upstream data
= can distinguish between LDA and DIF data

Error handling
- XError GUI interface -

L4 DOOCS Error Monitor (Version 5.1.39) wutao@larch.pp.rhulac.uk

List of Subsystems :

— - Scan Time [secl: 90, |e==|— | Mew Errors | Pending Errors | Error Masks | All Devices
Facility oObject 4 2
= Stop
==TTF WATCHDOG “| Errors in Subsystem :
|§IE§IEEEE§ gz:GENERHTD =|| Location New Pending Mask Code Time Date Error -
ODR._SVR 1 1] 1 0 16:57.55 4. Dec. 2008 i -
ODR1 1 1 0 34 14:29.37 22. Jan. @009 ODR DetatThread -
— —
Functions on selected items : Print complete list: Log Files :
ficknowledge | Enable] Disable) Mask Choice: T local mask Print History =]

ODR. Device Error: Can not Detach Thread !
ODRE__Server CODR1

14:29.37 22.01.2009 -> ODR DetatThread

e it is understood how to use Xview alarm handling in DOOCS

* some examples have been implemented for the ODR device
server

Database for DAQ

Database handles:

« Connection between devices

* File storage

 Runs

e Device configurations

— Resulting in a complicated entity diagram

Database implementation:
« MYSQL chosen as database type
* InnoDB chosen for safe multithread use, backups

e Connection Pool chose to access with several
threads

Clock and Control Card Device Server
David Decotigny

e device server exists
* registers can be read/written
e names are assigned as written in design document

* No tests on real card up to now

e error handling still missing

 at the moment Properties = Registers

—=need to have more friendly interface for shifters

Conclusion & Outlook

« ODR device server used as guineapig in order to test and
Implement all features needed

— Error handling: done

— GUIs: developed

— Database access: started

— State machine: to be developed

 New device servers to follow soon when hardware is ready:

— Design concepts: understood
— CCC device server: waiting for real device to test
— LDA device server: only emulator exists

(how realistic is it?)
— DIF device server: waiting for real device

Backup slides

Overview over the ODR iInterface

e one device server can
have many instance all
connecting to different
ports and hostnames

e using 2 threads: one for
receiving, one for sending
on the socket

e sockets format chosen
to build an interface to the
ODR and the LDA

ODR

4 2

ODR

—> store to disk

_ Control Interface)
"

ENS
aming service

I Sockets

DOOCS device server

Build Socket Stream
Send configuration

Recv data

Send & Recv In 2 threads

/" RPC

Database Access

C eqg_init_prolog();)

| Start connection pool

MYSQL
Database

EqFctODR::init()

|

EgFct * eq _create

| * database contains connections of the

EgFctODR::update();

C refr&d;_epilog();)

Runs and files

DataFile

Run Config

Configuration
extended on
next page

FileLocation

Configuration & Devices & DCC for DHCAL

1 1 n 1

ODR DIF

n

n n n
ODR Config LDA Config DIF Config

ODR Properties LDA Properties DIF Properties

ECAL chip

ECAL Properties

State machine

What we need to do to ramp up for data taking:

Send hardware handshake to check connections (could also be
done by getting conf.)

Let file database know about run number

Tell ODR which run number we have right now to put it into the
file name

Send conf.

Recelve automatic acknowledgement or send getConfiguration
command

State Analysis

| State = Idle]
suceed/| 1 failed 1
Transition = Handshake Transition = PowerDown

[__ State=Ready |

[ransition = SendRunNumbe

N

] Transition = EndRun

[State = Running__ |

ransition = StartConfiauration Transition = EndConfiguratior

C State = Configured |

Transition = BunchTrainStart Tr?nsition = BunchTrainEnd

[State = InBunchTrain |

Transition: Handshake

—— establish connections

DAQ | |DAQ | DAQ
PC PC PC
Conf
RC DB

Transition: StartRun
read system status

DAQ DAQ DAQ
PC PC PC

Conf
DB

Send run number to ODR software,
Make new run number plus unique in file
database
(flename = [run_number + unique identifier])
and fill in configurations

Transition: StartConfiguration

DAQ DAQ DAQ
PC PC PC
7| file| 1 file i

file

Conf
DB

Extract conf files for all device servers from db,
Recheck that configuration has been received

ODR, LDA and DIF device server
- hardware, firmware, driver solutions -

LDA e different

control/configuration
data paths because

LDA data flow

ODR firmware can
ODR firmware distinguish between
data flow to/from

A oW 5pR and upstream

ODR dat

ODR driver (caldata)

Methods of the device server

C eqg_init_prolog();)

y

EqFctODR::init()

|

EgFct * eq _create

:

EgFctODR::update();

C

refresh_epilog();

)

—

/

The init() method is call for every location
during startup of the server. Initialization
of the hardware may be done here

create the locations, properties loaded.

{during startup of the server to

<

(This update method usually does the real
work in a DOOCS server. It runs in a

loop over all locations
—

