

A 12-bit low-power ADC for SKIROC

Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

L.Royer- Calice Meeting @ DESY - March. 2009

L.Royer– Calice Meeting @ DESY – March. 2009

- Low cost technology: 0.35 µm CMOS Austriamicrosystems
- Clock frequency: 1MHz
- Resolution: 12 bits
- Supply voltage : 3.5V
- Power pulsing system implemented
- Digital process of the bits (1.5 bit/stage algorithm) done with an external FPGA
- 10 chips have been tested
 - → Results in the Calice Internal Note CIN-14

Power pulsing measurement

1 µs for recovery time after swicth ON included

L.Royer- Calice Meeting @ DESY - March. 2009

Variation of consumption vs Duty cycle of power pulsing

Duty cycle (time ON / total time of one cycle in %)

- □ The problem has been fixed → Common Mode FeedBack instability with process fluctuation
- Chip submitted in March 09 to test the improvement

Chip number	1	2	3	4	5	6	7	8	9	10
Stability	OK	NO	OK	OK	NO	OK	NO	OK	NO	OK
INL (min/max)(LSB)	± 1.5	-	± 2	± 1.5	-	-1.5/+2	-	± 3	-	±1
DNL (min/max)(LSB)	±1	-	±1	± 1.5	Ι	±1	Ι	-2/+1	Ι	±1

L.Royer- Calice Meeting @ DESY - March. 2009

Estimation of the Noise

Chip number	1	2	3	4	5	6	7	8	9	10
Stability	OK	NO	OK	OK	NO	OK	NO	OK	NO	OK
INL (min/max)(LSB)	± 1.5	_	± 2	± 1.5	-	-1.5/+2	_	± 3	_	±1
DNL (min/max)(LSB)	±1	_	±1	± 1.5	-	±1	-	-2/+1	_	±1
Noise @0.1V (std dev.)	0.72	_	0.72	0.70	_	0.76	_	0.79	_	0.77

Code distribution (input 1V)

Standard deviation = 0.84 LSB (420µV)

L.Royer- Calice Meeting @ DESY - March. 2009

L.Royer- Calice Meeting @ DESY - March. 2009

Summary

- Measured performance in accordance with Si-W ECAL VFE requirements
 - Time conversion < 7µs
 - Consumption < 0.6µW per channel (power pulsing included)
 > 2.5% of the power budget of one VFE channel
 - Linearity: DNL < +/1 LSB & INL < +/-1 LSB</p>
 - Noise standard deviation < 0.8 LSB
- Yield improved with the new design of the amplifier
- A 12-bit cyclic ADC, dedicated to Si-W ECAL of ILC ready to be implemented in the next Skiroc chip.

