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Collider Parameters, Physical Constants and Notations

E , energy and p , momentum

Bρ , magnetic rigidity (Bρ = p/e)

L , luminosity

Q , bunch charge

N , number of particles in the bunch (N = Q/e)

nb , number of bunches in the train

frep , pulse repetition rate

εx and εy , horizontal and vertical emittances

σx
* and σy

*, rms horizontal and vertical beam sizes at the IP

σz , bunch length

α,β,γ , Twiss parameters

μ , tune

ψ , phase advance, 

e
e r

ecm
0

2
2

4πε
=

c = 299 792 458  m/s
e = 1.602 177 33 10-19 C
mec2 = 510 999 eV
µ0

= 4π 10-7 N A-2  permeability
ε0

= 1/µ0c
2 permittivity

re = 2.818 10-15 m

with
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ILC

BDS

Beam Delivery System

The Beam delivery system is the final part of the linear collider which transports the high 
energy beam from the high energy linac to the collision point (Interaction Point = IP).

Most Important Functions:
Final Focus: Focus the beams at the interaction point to achieve very small beam sizes.

Collimation: Remove any large amplitude particles (beam halo).
Tuning: Ensure that the small beams collide optimally at the IP.
Matching: Precise beam emittance measurement and coupling correction.
Diagnostics: Measure the key physics parameters such as energy and polarization.
Extraction: Safely extract the beams after collision to the high-power beam dumps.
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14mr IR

Final Focus
E-collimator

β-collimator

Diagnostics

Tune-up 
dump

Beam
Switch
Yard

Sacrificial 
collimators

Extraction

grid: 100m*1m Main dump

Muon wall

Tune-up & 
Emergency extraction

Linac
Exit

ILC Beam Delivery System Layout (RDR)
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Contents: Four (+ Two) Outstanding Questions ?
Part 1

Q1: do we need a Final Focus System ?
Luminosity, Emittance, 

Q2: do we need High Field Quadrupole Magnets ?
Quadrupole Magnets, Multipoles, Superconducting Quadrupoles,

Part 2
Q4: do we need Flat Beams ?

Beam-beam forces, Beamstrahlung, e+e- Pairs, Fast Feedback
Q3: do we need Corrections Systems ?

Beam Optics, Achromat, Emittance Growth

Part 3 (if time permits)
Q5 : do we need a Crossing Angle ?

Beam extraction, Kink Instability, Crab-crossing
Q6: do we need Collimation ?

Synchrotron radiation, SR collimation, Beam collimation
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Contents: Fundamentals in Beam Physics

Part 1
Luminosity
Emittance
Magnetism

Part 2
Beam-Beam Effect
Beam Optics
Synchrotron Radiation

Part 3
Collimation
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Question n°1:

Do we need a Final Focus System ?
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Collider Systematic

main linacbunch
compressor

damping
ring

source

pre-accelerator

collimation

final focus

IP

extraction
& dump

KeV

few GeV

few GeV
few GeV

250-500 GeV

main linacor co

w GeV 250-500

IP
X

This is ½ of a Linear Collider:
→ luminosity L ~1034 cm-2s-1

Electrons

Positrons

Collisions of beams directly from RF Linac → luminosity L ~ 5 1028 cm-2s-1
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Collisions of Linac Beams

main linacor co

w GeV 250-500

IP
X

Electrons

Positrons

Typical electron Linacs are producing: 
Q = 1 nC bunch charge (N = 6⋅109) at  γεx⋅γεy =1 µm2 normalized 
transverse emittances, transported through a FODO lattice with L = 38 m 
cell length, leading to βx⋅βy ≈ 382 m2 .
Assuming nb = 2625 bunches at frep = 5 Hz and E = 250 GeV per beam

⇒ L = 5 1028 cm-2s-1 luminosity
generated by σx*⋅σy* = 80 µm2 round beam sizes at the IP.

**

2

4 yx

repb fNn
σπσ

=LLuminosity:
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Collisions of Linac Beams from Dedicated Sources

main linacor co

w GeV 250-500

IP
X

Electrons

Positrons

Adding powerful electron and positron sources with
Q = 3.2 nC bunch charge (N = 2⋅1010)

⇒ L = 5 ⋅ 1029 cm-2s-1 luminosity

assuming γεx⋅γεy =1 µm2 normalized emittances (not realistic for 3.2 nC, 
especially for the positron source !!)

source

or

K V

**

2

4 yx

repb fNn
σπσ

=LLuminosity:
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Linac Beams from Dedicated Sources and Damping Rings

Symetric layout
for Positrons

Adding Damping Rings to reduce the normalized transverse emittances 
of the high charge electron and positron beams, to γεx⋅γεy =0.4 µm2

⇒ L = 8.5 ⋅ 1029 cm-2s-1 luminosity

generated by σx*⋅σy* = 50 µm2 flat beam sizes at the IP

main linacor co

w GeV 250-500

IP
X

bunch

damping
ring

source

pre-accelerator

KeV

few GeV

few GeV
few GeV Electrons
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De-magnification from Final Focus Systems

Final Focus Systems are implementing the necessary ~104 demagnification 
factors to reduce the σx*⋅σy* = 50 µm2 flat beam sizes to 0.0036 µm2

⇒ L ~ 1034 cm-2s-1 luminosity

The final focusing lens is implemented via a doublet (or triplet) of strong 
Quadrupole Magnets located at distance l* from the IP, typically 3 to 4 m.

main linacor colli

w GeV 250-500 G

X

main linacbunch
compressor

damping
ring

source

pre-accelerator

KeV

few GeV

few GeV
few GeV Electrons

l*

IP waist

β*
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Depth of Focus and Chromaticity

• The Beam Waist is realized over a finite region of longitudinal space called 
the Depth of Focus (like for a camera), measured by the β* parameter.
The collision with the opposite beam is optimum only within this region.
• Like all magnets (cf. spectrometer magnets) the final quadrupoles create 
an energy dependant focusing effect, a 2nd order effect called Chromaticity.
As a consequence, the sizes and positions of the beam waist vary with the 
energy of the particles : this is called Chromatic Aberrations.

main linacor co

w GeV 250-500

X

main linacbunch
compressor

damping
ring

source

pre-accelerator

KeV

few GeV

few GeV
few GeV Electrons

l*

IP waist

β*
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The six important concepts introduced so far

1. Luminosity

2. Beam emittance (β -functions)

3. Final doublet of quadrupoles

4. Beam optics (FODO lattice, 1st order beam optics)

5. Chromatic aberrations (2nd order beam optics)

6. Flat beams
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Luminosity
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The Collider Luminosity

The Rate NE of Physics Event E generated during a beam-beam collision is 
given by:

where
• σE is the Cross-Section of the Physics Event E

• L is the Integrated Luminosity over the bunch crossing.

NE , σE , and L are Lorentz invariant quantities !

t
e+ e- e- e+

EE σ⋅= LN
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ρ1

Luminosity for Fixed Target Collision

ρ2

e-

e+

The integrated luminosity of an elementary volume element d3x of particle density ρ2
moving through a fixed target of density ρ1 during the time dt , is given by:

vdt

vdtxdd 3
21 ρρ=L

d3x

The particle densities are defined such that:

Ntxxd =∫ ),(3 rρ
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ρ1

The Luminosity for Mono-kinetic Beams

ρ2

e-

e+

• The integrated luminosity generated by the elementary volume element  d3x of 
particle density ρ1 moving through ρ2 with homogeneous velocities v1 and v2 , is:

d3xv1
v2

2/1

2

2
212

2121
3 )()( ⎥

⎦

⎤
⎢
⎣

⎡ ×
−−=

c
vvvvdtxdd
rr

rrρρL

• Introducing the Lorentz current 4-vector , the integrated 
luminosity is expressed in an explicitly Lorentz invariant way:

( ) 2/12
2

2
1

2
21

3
2 )()(1 JJJJ −⋅= xdcdt

c
d L

),( vc rρρ=J
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ρ+
ρ−

The Luminosity for Mono-kinetic Beams
e−

e+

For relativistic beams                           , this simplifies to:

v+
v−

First example: the head-on collision                                  of Gaussian bunches 

∞→21 , γγ

zcvv ˆ=−= −+
rr

⎟
⎟

⎠

⎞

⎜
⎜

⎝
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++−=
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2

2

2
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2/3

)(
2
1exp

)2(
),(

zyxzyx

ctzyxNtx
σσσσσσπ

ρ r

leads to                                           with  
yx

NN
ΣΣ

= −+

π4
L )(

2
1 222

−+ +=Σ σσ

)(11
21

2
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3
221

3
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c
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c
rr
⋅−=⋅= ∫∫ ρρJJL
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The Luminosity for Mono-kinetic Beams

ρ+

e+

c

ρ−
e−

-c

2nd example: head-on collision of mirror Gaussian bunches 
yx

N
σσπ4

2

=0L

3rd example: idem with transverse offsets δx , δy : 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

22

4
1exp

yx

yx
σ
δ

σ
δ

0LL

ρ+

e+

c

ρ−
e−

-c

δx

⇒ average luminosity over the bunch trains and collider pulse: 
yx

Nnf
σσπ4

2
brep=0L
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The Luminosity for Mono-kinetic Beams

ρ−
e−

-c

4th example: case n°3, with a crossing angle 

5th example:  case n°3, with a crab crossing angle 

)2cos( α0LL =

ρ+

e+

c

2
P )/)2(tan(1 Θ+= α0LL with                              , ‘Piwinski angle’

or ‘diagonal angle’

2α±

zx σσ=Θ P

x

s

x

s

2α±
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The Luminosity of Realistic Colliding Beams

The above “academic” results are modified by the reality of 2 hard factors of Linear 
Colliders
1. Real  beams are not mono-kinetic: include angular distribution (cf. left pict.)
2. Real particle trajectories are not straight during the collision: they are 

strongly deviated by the electromagnetic field generated by the opposite beam, 
the so-called “Beam-Beam Forces” (cf. right pict. and Beam-Beam section)

y

z

β* = “depth of focus”

e+

+Θ*

–Θ*

±σ*
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ρ1

The Luminosity for Colliding Beams

ρ2

e-

e+

Introducing time and velocity dependent distributions                    such that:

d3xv1
v2

Ntvxvdxd =∫ ),,(33 rrrr ρ

the integrated luminosity for colliding relativistic beams is given by:

∫

∫

⋅−=

⋅≅
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1
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The Hour Glass effect

y

z

β* = “depth of focus”

e+

+Θ*

–Θ*

±σ*
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Beams are naturally converging to their 
focus point, reaching their minimum 
sizes σx

∗ , σy
∗ , and diverging from there, 

with angular spreads : Θx , Θy .

The focus point is described by a local 
‘parabola’ of finite ‘depths of focus’

cvycvx yx /',/' ==
Introducing the angle variables 

and  assuming Gaussian bunches:
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The Hour Glass Reduction Factor
It is desirable to fulfil the condition                              in order to longitudinally contain 
most of the bunch particles within the depths of focus βx

∗and βy
∗ , hence the 1st

need for a longitudinal bunch compression system to reduce σz .

** , yxz ββσ <

• ILC (Ay =3/4)
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The Pinch Effect
In e+e− colliders, electrons are focused by 
the strong electromagnetic forces generated 
by the positron beam ( f = focal length). 
This is the well known beam-beam effect
limiting the luminosity of circular colliders.

In linear collider (single pass), the beams are 
‘pinched’ and the luminosity is enhanced by 
this Pinch Effect:

HD= disruption enhancement factor (usually 
includes the hour-glass reduction). 

Nota Bene: 
HD > 1 in e+e− colliders
HD < 1 in e−e− colliders

D
yx

H
Nnf
σσπ4

2
brep=L

However, for long bunches, several 
trajectory oscillations can develop and 
lead to an unstable disruption regime.

The Disruption Parameter is defined as

hence the 2nd need for a short bunches 
and a longitudinal bunch compression 
system.

2ns)oscillatio(#∝= fD zσ

f
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ILC parameters
Dy ~ 12

Luminosity enhancement 
HD ~ 1.4

Not much of an instability.

Beam-Beam Simulations

Animations produced by A. Seryi using the GUINEAPIG
beam-beam simulation code (D. Schulte).




28Beam Delivery System

Luminosity as a Function of Vertical Beam Offset

• Small disruption is beneficial to the luminosity because the bunches are attracting 
and focusing each other smoothly.
• Large disruption is detrimental at small offsets because a kink instability develops.
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ILC Beam Delivery System Parameters

Notice:
• ‘Razor blade’ transverse aspect of the beams at collision:

aspect ratio    (cf. next page)
• The 14 mrad crossing angle is larger that Piwinski angle

The reduction of luminosity is too large:                                                , hence 
crab-crossing is mandatory (cf. dedicated section on crossing angle).

• The vertical disruption is large Dy =18.5 ⇒ ~ one oscillation in the vertical plane.

mrad2.2*
P ≈=Θ zx σσ

115** ≈= yxR σσ

029.0mrad) 14( LL ==α



30Beam Delivery System

Flat Beams : Luminosity and Horizontality

e+

5th example: error on ‘horizontality’ of flat beams
**

2

4 yx

N
σσπ

=0L

)8/1(

4/)2)((sin1
22

222

R

RR

ϕ

ϕ

−≈

−++= −

0

0

L

LL

e−

The horizontality of flat beams is inherited from their respective Damping Rings.
In case of an error, the overlap of their distributions is not perfect and induces a 
reduction of the luminosity:s

y

xϕ

**
yxR σσ=for large aspect ratios

Tolerance: mrad 1       100 ≤⇒≈ ϕR
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Beam Emittance
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Laplace Equation and Hamiltonian Mechanics

• The motion of individual trajectories in an external electromagnetic field 
derives from the Laplace Equation

with                 , and                  particle momentum.

• It obeys the laws of Hamiltonian Mechanics:

(Hamilton-Jacobi equations)

with

and                                                                              is the conserved energy,  

where                    is the electromagnetic potential 4-vector.

• Hamilton equations derives from a Least Action Principle based on the Action:

)( BvEq
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Hamiltonian Mechanics and Beam Distribution
Hamiltonian Mechanics is valid as long as 
1. There is no Collective Effects (space charge, wake fields)
2. Synchrotron Radiation is ignored
3. There is no beam collimation
These conditions are realized ‘most of the time’ along the Beam Delivery System.

Hamiltonian Mechanics allows a powerful description of the beam dynamics using 
Symplectic Transformations of the beam particle 6-dimensional  Phase Space 

Coordinates .

Introducing the 6D Skew Matrix                                , with      the 3D unit matrix,
Hamilton-Jacobi equations read:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
0

0

3

3

1
1

J 31
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

P
Q
r

r

X

H
dt
d

XJX
∂⋅=

Solving this system of equations amounts to deriving the time evolution of particle 
trajectories, and therefore the expressions of the transformation which maps the 
coordinates            into            .

This map is noted                 , for convenience.
)( 1tX )( 2tX

)( 12 XX
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Some Symplectic Algebra in Even Dimensions D=2,4,6,… 

• The skew matrix is anti-symmetric                     and such that                    .

• The Symplectic Group Sp(D) is composed of the symplectic matrices S such 
that :

In other words (and by analogy with orthogonal matrices), they leaves the anti-
symmetric quadratic form                     invariant.            N.B:

• The matrix        itself is symplectic:                        .

• If                         , then

• If                         , then                        ;    in other words .

• The group Sp(D) is generated by the matrices                     such that T is a 
symmetric matrix                                                          .

• In 2 dimensions: Sp(2) ≡ Sl (2).
Indeed, for any regular 2D matrix:  

JJ −=Τ
D

2 1J −=

JSJS =Τ

XJX ⋅⋅Τ

)exp( TJ

J )D(Sp∈J

1)det( =S

)D(Sp∈S )D(Sp∈ΤS

)D(Sp∈S

2)1D(D)D(dim +=⇒ Sp

)D()D( SlSp ⊂

)det(1 MJMJM ΤΤ− =

JSJS 1−Τ −=
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Symplectic Maps

MM HHH
dt
d

dt
d JJ

X
XJJ

X
X

X
J XXX

2

0

2

00

∂=
∂
∂

∂=∂
∂
∂

=
∂
∂

=

1st property: Map Symplecticity
The transformation               which maps       coordinates at t0 into      coordinates 

at t , is symplectic in the sense that its Jacobian matrix is a symplectic matrix.

Proof:
Let us note the Jacobian matrix of the map                               .

Since                         is a symplectic matrix, we need to show that  

)( 0XX 0X X

)()(
0

ttM X
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∂
∂

=

0)( =Τ
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60 )( 1J =tM
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X∂
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Liouville Theorem

2nd property: Phase Space Volumes are invariant of Motion

3rd property: Particle Densities are invariant of Motion

Given a particle density distribution             such that                                , then 
following the motion of the       particles from  t0 to t :

∫∫∫ ==
Population 0

6

Population 0
6

Population

6 )(det XXJX ddtd M

XX 6)( ddN ρ=)(Xρ

)()(                         
)()()()(

0

0
6

0
6

0

XX
XXXX

ρρ
ρρ

=⇒
=⇒= ddtdNtdN

dN

Q0

P0

Q

P

Q

P
YES NO
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Liouville Theorem
Global Phase Space Volumes (‘areas’) are invariant of Motion:

Q0

P0

Q

P

Q

P

Q0

P0

Q

P

Q

P
linear motion non-linear motionGaussian-like ellipsoid

Rectangular collimated 

t0 → t

t0 → t
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The Particle Density and its Moments

The beam is modelled by a particle density distribution             which generates a 
set of characteristic real numbers, its Moments.

The first three moments 
0th order moment: beam charge (or population):

1st order moment: centre of mass (or 6-vector beam centroid):

2nd order moment: beam matrix (6x6 matrix):

are widely used to characterize the beam transport. 

)(Xρ

Nd =∫ )(6 XX ρ

XXXXC == ∫ )(1 6 ρd
N

∫ Τ

ΤΤΤ

−⋅−=
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)())((1

)()(

6 CXCXXX

CCXXCXCXΣ

ρd
N



39Beam Delivery System

The Gaussian Particle Density

• The Gaussian density distribution, in even D dimensions

is fully characterized by its 3 first moments                .

• It simplifies to the ‘usual’ Gaussian distribution functions, assuming for instance

in D=2 dimensions

then

• It is one of the few typical beam distribution used in the Beam Tracking 
simulation codes which probe the beam transport properties.

Other distributions widely used: Uniform (‘Water-bag’), Ellipsoid surface (K-V), … 
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Some Algebra about the Beam Matrix
1st property:      is a symmetric definite-positive matrix

2nd property:      is strictly positive (except for the point-like distribution) and can be 
inverted.

3rd property: Normal form of      :

Σ
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Σ
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Some Algebra about the Beam Matrix
3rd property: Normal form of

Proof: 

Introducing the Square Root  Matrix           such that                               , and the 
anti-symmetric matrix                                    , one can find an orthogonal matrix O
such that

(kind of Jordan normal form for anti-symmetric matrices)

Then, introducing

one can show that

1)

2)

Σ
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Emittance
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Linearized Motion
• For small deviations about the accelerator reference trajectory                  , the 
transformation map                can be linearized into:

with

a symplectic matrix

• At the first order, the beam centre and beam matrix transform as:
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Intrinsic Emittances
• The 3 quantities                  are called the Intrinsic Emittances : they are invariant 
of the motion, in the linearized motion approximation.

• To calculate these intrinsic emittances, one uses the 2 properties:

D=6 dimensions: ???

D=4 dimensions:

D=2 dimensions:

where A is the area of the 2D ellipse  

321 ,, εεε

)tr()1(2)tr()tr()(

)()det(
2221

2
321

nnnn εJEJΣSJΕSJΣ

Σ

−==⇒=

=
−

εεε

π
ε A

== )det(Σ

)(2)tr(

)()det(
2
2

2
1

2

2
21

εε

εε

+−=

=

JΣ

Σ

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−−=

−+−=
⇒

)det(16)(tr)tr(
2
1

)det(16)(tr)tr(
2
1

222
2

222
1

ΣJΣJΣ

ΣJΣJΣ

ε

ε

11 =⋅⋅ −Τ XΣX



44Beam Delivery System

Switching Basis
We (will) switch to a new coordinates basis

in which                                                          is the skew matrix,

and the normal form of the beam matrix is
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Projected Emittances
• Case of Uncoupled Beam Matrix
In some ideal locations along perfect beam lines, the beam matrix is uncoupled in 
the 3 physical dimensions (x,y z):

Then, the 3 emittances are given by

• Case of 4D Transverse Coupled Matrix
In reality, either by concept or by the effect of misalignment errors, the beam matrix 
is x-y coupled

.

Accelerator instrumentation, usually built in horizontal and vertical frames, allows to 
measure the projected emittances

which are not invariant of motion, and such that   
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Beam Line Coordinate System
Particle trajectories are parameterized with respect to a Reference Trajectory  

associated to a Reference Momentum                                                .

One introduces the curvilinear coordinate system defined by the Moving Frame 
of  (planar) Reference Trajectory, such that :

)(ref tR
r

)()( refref tRmtP &rr
γ=

)ˆ,ˆ,ˆ( syx

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

−=
⇒

=

≡

ρ

ρ
s

ds
xd

x
ds

sd

R

Rs

dtRds

ˆˆ

ˆˆ

ˆ
ref

ref

ref

&r

&r

&r

TRANSPORT
K. Brown et al

arc length

tangent vector

ρ = curvature radius



47Beam Delivery System

Particle Motion Coordinates
Then, the particle motion is parameterized by                             through

where                        are the time
and position of the particle when
crossing the plane normal to the
reference trajectory at                  .

Note 1:               for particles
ahead of the reference particle.

Note 2:  for a planar reference 
trajectory:
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The Resulting Hamiltonian 
To study the evolution of Particle Motion, Beam Physicists like to trade the Time 
variable t with the Arc Length variable s defined by :

After some Canonical manipulations, this leads to a new Hamiltonian

in terms of the conjugate variables: 
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Hamiltonian mechanics and Symplecticity provide powerful tools to study beam 
dynamics over very long times, like the beam orbits in circular colliders.
They are of lesser importance for the design of linacs and transfer beam lines.
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TRANSPORT Coordinate System

with 

• For transfer lines, like BDS and linear accelerators, we turn to more familiar, but 
not symplectic conjugate variables, the TRANSPORT coordinates:
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Geometric and Normalized Emittances
• Geometric emittances of uncoupled motion

In TRANSPORT coordinates, the ‘geometric’ emittances calculated from the beam 
matrix

with

is not invariant under acceleration.

• Normalized emittances

Normalized emittance, invariant under linearized motion, are given by

For high energy beam lines            and
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The Beta Functions of the Beam (D=2) 
• The 2D beam matrix is parameterized as follows:

with

By definition                                                                                                                .

• The 2D beam ellipse                                can then  be parametrized by
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Normalized Variables (D=2) 
• The 2D beam matrix takes the normal form:

with

This suggests introducing the Normalized Variables

such that

• In these variables, the particle motion is described by simple rotations around a 
circle in (u,v) ‘phase space’  (cf. Beam Optics section).
But most of the information is retained in the β - functions.
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The General Form of the Beam Matrix (D=6)
In Final Focus Systems, several simplifications are in force :
1. the longitudinal motion is frozen: the arc length differences between trajectories 

are negligible and the bunch length is constant.
2. the transverse (x,y) motions are not coupled.

The resulting 6D beam matrix is parametrized as follows:

with the dispersion coefficients                               measure the correlations 
between transverse position-angle and energy, e.g.
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Sources of Emittance Growth
Linear Collider beams are experiencing many sources of emittance growth (or 
emittance degradation),  in particular through the Beam Delivery Systems : 

• Non Hamiltonian Mechanics :
Synchrotron Radiation (SR) : an interesting case because it works both sides:

1. at low energy, big injected emittances (transverse and longitudinal) are damped (i.e. 
reduced) down to the equilibrium emittances of Damping Rings;

2. at high energy, the longitudinal emittance growth dominates due to the strong energy 
dependence of SR, and couples to the transverse motion through magnet chromaticity.

Collective Effects,  e.g. beam-beam interactions

• Non-linear motion
a source of the Linear Emittance growth
but does not violate Liouville Theorem

• Coupling
a source of 4D projected emittance growth
but not of 4D intrinsic emittance growth

• Transverse Wakefields
a source of 4D projected emittance growth
but not of 4D intrinsic emittance growth.
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Kinematics at the Interaction Point
We assume a perfect beam at the IP, without any coupling, and we investigate the 
kinematics of the beam in the vertical plane at the 5.7 nm focus.
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Beta Functions at the Interaction Point

we can calculate the Beam Matrix at and after the IP, using 
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Question n°2:

Do we need High Field Quadrupole Magnets ?
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y'

The Last Focusing Lens
The 14 µrad angular spread is the highest ever downstream of the Damping Rings.
The ‘high’ beam convergence is created by a focusing lens, located at a distance 
l* from the IP.

before the lens:
diverging beam

after the lens:
converging beam
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δy’=− δy/fδy

The Final Lens: A Magnetic Quadrupole

The angular kick δy’ created by the lens 
is proportional to the trajectory offset δy .
If it is generated by a magnet of length L:
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The LHC lattice quadrupoles are designed for  223 T/m.
They are Superconducting Magnets (NbTi technology) 
with 56 mm bore diameter.
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Long Quadrupole Magnet
Quadrupole magnets create gradient 
of bending field

From Maxwell’s equation in Vacuum

this gradient has the same value and 
same sign in both planes.

As a consequence, for G > 0 , the 
Laplace force 

is focusing in the horizontal plane 
and defocusing in the vertical plane:
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⇒ to focus in both planes, a quadrupole doublet, or triplet, is required.
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Quadrupole Doublet: Thin Lens Approximation

The overall linear motion is given the following composition of elementary transfer 
matrices:
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This transfer matrix is focusing in both planes if the ‘R21’ terms 
are negative in both planes, i.e. for both signs of f1 and f2 .
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A quadrupole doublet is potentially focusing the beam in the 2 planes.

beam direction

As a first approach,
Short Quadrupoles can be 
treated like thin lenses. 
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Quadrupole Doublet: Long Quadrupoles
A long quadrupoles has the following transfer matrices (cf. Beam Optics section) :

in its focusing plane 

with 

in its defocusing plane

It can be treated as a Thin Lens in the limit                with                      constant. 
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The Final Focus System
The Final Focus System operates like an Optical Telescope:
• it uses 2 confocal lenses: a weak lens with a long  f1 focal distance, followed by 
a strong lens with a short  f2 focal distance;
• it realizes point-to-point and parallel-to-parallel imaging of the beam with a 
demagnification of the images by the factor M = f1/ f2 >> 1

 

• 
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FFS Chromatic effect: the Momentum Bandwidth
The Final Focus System generates chromatic aberrations of the IP beam image.
Introducing the momentum dependence                                                       of the
focal distances one can show that:,
• the aberration                for the parallel-to-parallel images (~ cosine-like 
trajectories) are of order       ;
• the aberration                for the point-to-point images (~ sine-like trajectories) are 
given by:

On average, one gets:
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The parameter                                is called the Chromaticity.
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Synchrotron Radiation: Oide Effect
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Magnetism

(or “Why four poles in a quadrupole magnet ?”)
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Quadrupole Magnets: the Optician Standpoint

• For the beam optician a Quadrupole is a device which creates a Dipole Gradient G, 
that is:

1) does not bend the reference trajectory,
2) soft kicks particles with small offsets from the reference trajectory
3) hard kicks particles with large offsets:

Hence 
Quadrupole = Dipole Gradient (along a straight line)

• In the same spirit, from the beam optics standpoint a Sextupole is a device which 
creates a Quadrupole Gradient G’ in the transverse plane:

Hence 
Sextupole = Quadrupole Gradient 
Hexapôle = Gradient Quadripolaire (in French)

etc…
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Quadrupole Magnets: the Mathematician Standpoint

Two Dimensional Static Magnetism
in an Electrical Current Free Region

(representing the accelerator beam pipe)

• We specialize on Time Independent Transverse Magnetic Fields, 

which is realized by infinitely long magnets with a uniform field distribution along 
the longitudinal axis, and no end-fields.

• Such a field               derives from a longitudinal vector potential

• Maxwell-Ampère’s equation in the vacuum imposes that the          
scalar field                is an harmonic function obeying Laplace’s equation:
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Some Symmetry : Normal and Skew Magnetic Fields

• Symmetry with respect to the ‘horizontal’ plane                              :
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• Transverse magnetic fields can be decomposed into the sum of symmetric 
(normal) and antisymetric (skew) components:

such that
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• The implementation of this symmetry simplifies the design of accelerator  since it 
eliminates (x,y) transverse coupling by construction (cf. Beam Optics section).
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• We introduce the complex variable                      such that:iyxz +=

zz

yxz
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• The solution of Laplace’s equation                                                        is

and, for a real potential               :

with a an analytic complex function (essentially, an infinite polynomial).

• By the symmetry                                                 
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Harmonic Expansion of the Vector Potential A

• Introducing the notation

with                        real coefficients

the vector potential can be expanded as follows
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• In polar coordinates ( r, θ ), the vector potential can be expanded in the multi-
polar harmonic expansion:
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Harmonic Expansion of the Magnetic Field B

• Introduce the complex magnetic field such that

,

the complex field can be expanded as follows
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• In polar coordinates ( r, θ ),                                     and the magnetic field can be 
expanded in the multi-polar harmonic expansion:
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• Normal Component

BN is a uniform “vertical” field which bends trajectory in the “horizontal” plane

• Unlike this mathematical 2D model, most of real accelerator dipole magnets are 
not straight, but are bent around the reference trajectory with a curvature radius ρ
given by

Dipole magnet transfer maps are the most complex elementary map to modelize !!

The Ideal Dipole Magnetic Field : n = 1

qpB /ref=ρ
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• Skew Component

BS is a uniform “horizontal” field which bends trajectory in the “vertical” plane

BS(x,y)
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
1a

BS

r

x

y

ẑ
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The Ideal Quadrupole Magnetic Field : n = 2

• Normal Component

• Skew Component

BS is derived BN from by a rotation of        .
4
π
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Magnetic field lines of a quadrupole magnet
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The Ideal Sextupole Magnetic Field : n = 3

• Normal Component

• Skew Component

BS is derived BN from by a rotation of        .
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Misaligned Sextupole Magnet

We consider only the Normal Sextupole Magnet  component.

As expected, the sextupole field can be expressed as a superposition of gradients 
of quadrupole :

but the ‘bad’ surprise is that it includes both normal and skew components.

As a consequence:
• the effect of a sextupole on a horizontally misaligned particle is that of a normal 
quadrupole ,
• the effect of a sextupole on a vertically misaligned particle is that of a skew 
quadrupole .

Conversely:
• an horizontally misaligned sextupole acts as a normal quadrupole,
• a vertically misaligned sextupole acts as a skew quadrupole.
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End of Part 1
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