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Classical single-bunch instabilities

In this lecture, we shall discuss (mostly longitudinal instabilities):

• Short-range wake fields.

• Potential-well distortion.

• The microwave instability.

• The Keil-Schnell criterion.

• Transverse mode-coupling instability.

Main reference: A. Chao, "Physics of collective beam instabilities in high 
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Main reference: A. Chao, "Physics of collective beam instabilities in high 

energy accelerators", Wiley, 1993.

Note: we work in mks units.  Wake field and impedance calculations are 

often done in cgs units.  To convert the formulae presented here to cgs 

units, simply set:
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Reminder: wake fields

The electromagnetic fields around a bunch of charged particles must satisfy 

Maxwell’s equations.

The presence of a vacuum chamber imposes boundary conditions that 

modify the fields.

Fields generated by the head of a bunch can act back on particles at the tail, 

modifying their dynamics and (potentially) driving instabilities.

The electromagnetic fields generated by a particle or a bunch of particles 

moving through a vacuum chamber are usually described as wake fields.
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Wake fields following a point charge in a 

cylindrical beam pipe with resistive walls.

(K. Bane)

The goal of calculating the wake fields is generally to derive a wake function.  

The wake function gives the effect of a leading particle on a following 

particle, as a function of the longitudinal distance between the two particles.

Reminder: wake fields and wake functions
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For example, the change in energy of particle B from the wake field of 

particle A in the figure, when the particles move through a given accelerator 

component, can be written:

where W|| is the wake function of the component, eNA is the charge of particle 

A, γ is the relativistic factor, re is the classical electron radius.
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Reminder: wake functions and impedances

The wake function describes the effect of a wake field using a time domain

representation.  We can also describe the effect of a wake field using a 
frequency domain representation.

In the frequency domain representation, the wake field of an accelerator 
component is given by an impedance, Z||(ω).  The energy change of a 

particle in a bunch when passing through the component is given by:
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where          is the beam current frequency spectrum, and z is the 

longitudinal coordinate of the particle in the bunch.

The wake function and the impedance are related by a Fourier transform:
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Long-range and short-range wake fields

In Lecture 6, we looked at the effects of long-range wake fields.  We 
modelled the beam as a set of bunches, with each bunch represented by a 
single large "point-like" charge.  The long-range wake fields coupled the 
motion of different bunches.

In this lecture, we will look at the effects of short-range wake fields.  A short-
range wake field is one that extends only over the length of a single bunch.  
(In the frequency domain, this corresponds to a very high frequency 
resonator).

To understand the effects of short-range wake fields, we have to consider 
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To understand the effects of short-range wake fields, we have to consider 
the "internal" dynamics of individual bunches.

We will model the bunch as a charge distribution, and try to work out how 
the distribution function evolves over time, in the presence of a wake field.



The longitudinal bunch distribution

First of all, let us consider the impact of wake fields on the longitudinal 
bunch distribution, assuming that the distribution can reach a stable 
equilibrium.

The longitudinal equations of motion for the dynamical variables z and δ are:
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The first term in the second equation gives the longitudinal "focusing" effect 
of the RF cavities, which results in synchrotron oscillations with tune νs.

The second term in the second equation gives the energy change resulting 
from the wake fields.
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The longitudinal bunch distribution

The longitudinal equations of motion may be derived from a Hamiltonian:

using Hamilton's equations:

It follows from Hamilton's equations that the Hamiltonian itself is a constant 
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It follows from Hamilton's equations that the Hamiltonian itself is a constant 
of the motion (as long as there is no explicit dependence on the independent 
variable, s):

Hence, any function of the Hamiltonian is a constant of the motion.  In 
particular, if we are looking for an equilibrium distribution that is (by 
definition) independent of s, we can construct such a distribution as any 

function of the Hamiltonian.
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The longitudinal bunch distribution

In electron storage rings, at low bunch intensity, each bunch arrives (through 
dissipative radiation processes) at a Gaussian profile in z and δ.

In the absence of the wake fields (i.e. in the limit of low charge), we can 
write for the Hamiltonian:

and for the invariant distribution:
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and for the invariant distribution:

where:
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The longitudinal bunch distribution: potential-well distortion

Generalising this result to the case with wake fields suggests that we can 
write the equilibrium longitudinal distribution:

Note that the distribution in δ remains Gaussian.  The longitudinal profile (i.e. 
distribution in z) must obey the equation:
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This equation (or its derivative) is known as the Haissinski equation.  It 
describes the "potential-well distortion", which is the change in shape of the 
equilibrium longitudinal profile of a bunch in the presence of wake fields in a 
storage ring.

If we know the wake function, we can solve the Haissinski equation 
numerically to find the stable longitudinal distribution.
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The longitudinal bunch distribution: potential-well distortion
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From A. Chao, "Physics of collective beam instabilities in high energy accelerators", Wiley, 1993.

Single-bunch instabilities

At very low bunch charges, wake fields have little effect on bunches in a 
storage ring.

As the charge is increased, we start to observe the effects of the wake fields 
in the distortion of the longitudinal profile of the bunches (potential-well 
distortion).

As the charge is further increased, the bunch distribution becomes unstable.  
In this regime, the Haissinski equation is no longer valid, because an 
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In this regime, the Haissinski equation is no longer valid, because an 
equilibrium distribution does not exist.

We need to use different techniques to analyse the dynamics in the 
longitudinal regime…



Single-bunch instabilities
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Observation of single-bunch longitudinal instability in the Los Alamos PSR, caused by an inductive 
impedance.  From C. Beltran, A.A. Browman and R.J. Macek, "Calculations and observations of 
the longitudinal instability caused by the ferrite inductors at the Los Alamos Proton Storage Ring", 
Proceedings of the 2003 Particle Accelerator Conference, Portland, Oregon (2003).

The Vlasov equation

The fundamental equation describing the evolution of a density function in 
phase space is the Vlasov equation.

We shall work in longitudinal phase space, using dynamical variables θ (the 
azimuthal angle around the circumference of a storage ring) and δ (the 
energy deviation).  We shall use t (time) as the independent variable.

Consider a distribution of particles in longitudinal phase space, with the local 
density of particles at time t given by Ψ(θ,δ;t).  Since the number of particles 

is conserved, we can write:

=
Ψd
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which implies that:

This is the Vlasov equation.  Our task is to:

1.  find     and    by considering the motion of individual particles;

2.  solve the Vlasov equation to find the time-evolution of a distribution.
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The Vlasov equation for longitudinal phase space

In general, the revolution frequency depends on the energy deviation.  To 
first order in the energy deviation, we can write:

where ω0 is the angular revolution frequency (≈ 2πc/C) for a particle with the 

reference energy, and α is the momentum compaction factor.

( )δαωθ p−= 10
&
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0

reference energy, and αp is the momentum compaction factor.

The Vlasov equation for longitudinal phase space

We now need to find   .

Let us consider a "coasting beam" model, in which the beam is continuously 
distributed around the ring, and particles only change their energy deviation 
as a result of the longitudinal wake fields in the ring.  We will justify this 
apparently crude model of an electron beam in a storage ring later.

Consider further a distribution that can be written as:

This represents a stationary distribution Ψ which is uniform around the ring 

δ&

( ) ( ) ( ) ( )tni net
ωθδδδθ −∆Ψ+Ψ=Ψ 0;,
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This represents a stationary distribution Ψ0 which is uniform around the ring 
but with some arbitrary dependence on the energy deviation; with some 
perturbation ∆Ψ with sinusoidal dependence on position around the ring 
(with n periods in one circumference), and again arbitrary dependence on 

the energy deviation.

The density perturbation has a time dependence given by the frequency ωn, 
which in general can be a function of the spatial dependence of the 
distribution.  The imaginary part of ωn will determine the stability of the 
beam.



The Vlasov equation for longitudinal phase space

The beam current in our model has two frequency components:

• a DC component, which, if we assume that the impedance Z||(ω)

vanishes for ω → 0, makes no contribution to any energy change of 

the particles in the beam;

• a component at frequency ωn which, if the impedance has a non-zero 
component Z||(ωn) leads to an energy change in each revolution.

If the beam distribution is normalised so that:
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and the total beam current is I0, then the perturbation to the current from the 

density perturbation ∆Ψ is:
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The Vlasov equation for longitudinal phase space

In terms of the variables θ and t, the longitudinal coordinate z of a particle in 
a "bunch" (for zero energy deviation and assuming velocity ≈ c) is:

Hence:

where we assume that ωn ≈ nω0. The perturbation in the current as a 

ctCz −=
π

θ

2

tnt
c

z
nn

nn ωθωθ
ω

ωω
−≈−=

0

18 Lecture 8: Single-Bunch InstabilitiesDamping Ring Designs and Issues

where we assume that ωn ≈ nω0. The perturbation in the current as a 
function of z is then:

The frequency spectrum of the perturbation in the current is:

As expected, the current spectrum contains the single frequency ωn.
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The Vlasov equation for longitudinal phase space

We can now calculate the energy loss for a particle in one turn through the 
accelerator, using the total impedance Z||(ω):

Since the current spectrum contains just a single frequency, this becomes:
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The rate of change of the energy deviation is then:
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The Vlasov equation for longitudinal phase space

Now we have expressions for the rate of change of the longitudinal 
variables:

which we can substitute into the Vlasov equation:
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Keeping terms to first order in the perturbation ∆Ψ, we find that the Vlasov 
equation becomes:

where
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The Vlasov equation for longitudinal phase space

If we write the Vlasov equation in the form:

then we observe that by integrating both sides over δ we obtain:
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This is an integral equation, which we need to solve to find the mode 
frequency ωn for a given impedance Z||(ωn), and a given mode (specified by 
the mode number n, which gives the number of periods of the density 

perturbation over the entire circumference of the ring).

This equation relates the mode frequency ωn to the mode number n; it is 

therefore usually called the "dispersion relation".

The Vlasov equation for longitudinal phase space

Solving the Vlasov equation is generally no easy task, and various 
numerical and analytical techniques have been devised to provide 
assistance.

Numerical techniques are often more satisfactory, since they allow one to 
study the dynamics including a detailed description of the impedance 
(obtained, for example, by modelling the vacuum chamber).  The way in 
which the beam behaves can be sensitive to details of the impedance.

Sometimes, a detailed description of the impedance is not available, or is 
not reliable, but a rough estimate of the beam dynamics is still desired.  
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not reliable, but a rough estimate of the beam dynamics is still desired.  
Then we can make some crude approximations, and obtain order-of-
magnitude analytical estimates for such quantities as the instability 
threshold.

Numerical techniques may or may not use the linearised Vlasov equation 
(the equation including the perturbation terms only to first order).  Analytical 
techniques always use the linearised equation.  By solving the linearised 
equation, we can only hope to identify instability thresholds: we cannot 
properly describe the behaviour of a mode that grows exponentially.



Dispersion relation for a beam with zero energy spread

As an example, let us consider the case of a beam with zero energy spread:

(The notation is somewhat unfortunate, but this means that the distribution is 
a delta function).  Such a beam is sometimes called a "cold" beam.  
Integrating by parts gives:
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The dispersion relation then gives:

and hence:
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Dispersion relation for a beam with zero energy spread

With zero energy spread, the dispersion relation gives the frequency for 
mode n:

We see that there are two solutions for the frequency.  In general, a mode 
will consist of a superposition of the two frequencies.

Significantly, we observe that, except for the case that the impedance Z||(ωn)
has complex phase 3π/2, there is always a solution for the frequency that 
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has complex phase 3π/2, there is always a solution for the frequency that 
has a positive imaginary part.  Consequently, when we put this solution into 
the equation for the distribution:

we see that the distribution is always unstable.  Physically, this is because 
there is no process in our model that will damp a mode that is driven by the 
impedance.  In the absence of any impedance, a density perturbation in the 
beam will persist indefinitely; and if an impedance is introduced with which 
the perturbation resonates, the perturbation will start to grow.

( ) ( ) ( ) ( )tni net
ωθδδδθ −∆Ψ+Ψ=Ψ 0;,



Energy spread, Landau damping and beam stability

Real beams have some energy spread, and this leads (in combination with 
the momentum compaction factor) to a variation in the revolution frequency 
of the particles.

The range of revolution frequencies results in any initial density perturbation 
becoming "smeared out" or decohering, at a rate dependent on the energy 
spread and the momentum compaction factor.

If there is an impedance in the ring with which a density perturbation can 
resonate, then the damping from the decoherence competes with the 
antidamping from the impedance.
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antidamping from the impedance.

With a low impedance or at low beam intensities, or with a large energy 
spread or momentum compaction factor, the antidamping from the 
decoherence dominates, and the beam remains stable.  This is a 
manifestation of Landau damping.

If the beam intensity is increased, then at some point the resonance 
becomes strong enough that the antidamping dominates: the beam 
becomes unstable.

Dispersion relation for a beam with Gaussian energy spread

Typically, we expect to find that a beam in an electron storage ring has a 
Gaussian energy spread:

Substituting this into the dispersion relation gives:
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where
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Dispersion relation for a beam with Gaussian energy spread

Let us write the dispersion relation in the form:

where:
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If the impedance is known, we can plot the real and imaginary parts of:

for a range of values of n.  The modes for any part of the curve lying in the 

region:

are unstable.
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Example: Beam stability with broad-band impedance

As an example, consider an impedance represented by a broad-band 
impedance:
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Example: Beam stability with broad-band impedance

Let us plot (red curve) the real 
and imaginary parts of:

and (black curve) the boundary 
given by:
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we find that the curves touch for:

This gives the stability condition:
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Application to bunched beams

In the stability diagram shown on the previous slide, the first mode to 
become unstable has a frequency given by:

We expect the resonant frequency of the broad-band impedance to satisfy:

where b is the beam pipe radius.  Since, in an electron storage ring, the 

beam pipe radius is typically of the same order of magnitude as the bunch 
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beam pipe radius is typically of the same order of magnitude as the bunch 
length, this means that, for the first mode to become unstable, we can 
expect:

In other words, the period of the unstable mode is likely to be shorter than 
the bunch length.  In this situation, if the timescale of the instability is short 
compared to the synchrotron period, a bunched beam can behave like a 
coasting beam, from point of view of the instability.
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Bunched beam stability with broad-band impedance

The stability condition that we derived for the broad-band impedance was:

where I0 is the average current.  We assume (following Boussard) that for a 

bunched beam, we can use the same stability condition, but simply replace 
the average current by the peak current:
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where N0 is the number of particles in a bunch, and σz is the rms bunch 

length.  We then find that the stability condition can be written as:

Note that this expression tells us that the beam is always unstable if σδ = 0, 
or if αp = 0; which agrees with our earlier results for a "cold" beam.
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Keil-Schnell-Boussard criterion

The broad-band resonator model is not usually very good for 
storage rings.  In the design of an accelerator, a significant amount 
of effort goes into modelling the impedance, so as to be able to 
determine the instability thresholds.  But at an early stage, it is 
difficult to know what the impedance is likely to look like.

In this situation, an approximation that is sometimes made, is 
simply to replace the boundary obtained from                with a circle 
of radius            .  In that case, the stability condition becomes:
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or:

This is known as the Keil-Schnell criterion.

Note that the exact shape of the instability boundary depends on 
the shape of the energy distribution (in this case, Gaussian).
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Keil-Schnell-Boussard criterion

We can apply the Keil-Schnell criterion to bunched beams, by making the 
same assumption as before; namely, that we can simply replace the 
average current (of a coasting beam) by the peak current (of a bunched 
beam).

The result is known as the Keil-Schnell-Boussard criterion:
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Note that the result is very close to that we obtained for the broad-band 
impedance model; there just some variation in the numerical constant.

As should be apparent, the Keil-Schnell-Boussard criterion cannot give 
anything other than a very crude estimate of the instability threshold in a 
storage ring.  However, it may be good enough for a rough order-of-
magnitude estimate in cases where an impedance model is not available.

Wherever possible, several different methods (including, for example, 
tracking) should be used to obtain reliable estimates of instability thresholds.

Characteristics of the microwave instability

The single-bunch instability model we have developed here, is generally 
known as the "microwave instability", because it leads to density fluctuations 
in a bunch on a length scale of ~ 1 mm, and generates detectable 
microwave radiation.

Since we analysed the problem by making a linear approximation to the 
Vlasov equation, all we can hope to do is estimate the instability threshold 
(which is the point at which Landau damping is insufficient to keep the beam 
stable).

Observations (which are understood in terms of further development of the 
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Observations (which are understood in terms of further development of the 
theory, and by simulations) suggest that above threshold, the bunch 
undergoes a steady increase in energy spread, which varies according to a 
1/3 power law with the bunch current:

Associated with the increase in energy spread is a proportionate increase in 
bunch length.  The microwave instability is sometimes known as "turbulent 
bunch lengthening".
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Characteristics of the microwave instability
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Y.-C. Chae et al, "Measurement of the longitudinal microwave instability in the APS storage ring", 
Proceedings of the 2001 Particle Accelerator Conference, Chicago (2001).

Observations of single-bunch instabilities in the SLC damping rings

The dynamics of single-bunch instabilities, depending on the beam 
conditions and the wake fields, can become very complex.

A significant operational problem for the SLC damping rings was associated 
with a "bursting" mode of instability, in which the bunch distribution never 
reached a steady equilibrium.
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Single-bunch instability in the SLC damping rings.

Left: Experimental observation (B. Podobedov, BNL).  Right: Simulation (K. Oide, KEK).



Microwave instability threshold for the ILC damping rings

The important parameters for the single-bunch instability threshold are:

• the bunch length;

Longer is better, to reduce the peak current; but there is an upper limit set by 

what the bunch compressors can deal with.

• the energy spread;

Larger is better, but again there are limits from the bunch compressors.  In 

the ILC damping rings, the energy spread is essentially determined by the 

beam energy and the field of the damping wigglers.

• the beam energy;

A higher energy is better, but increases costs, and the equilibrium 
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A higher energy is better, but increases costs, and the equilibrium 

emittances.

• the bunch charge;

Lower is better, but the bunch charge is set by the luminosity requirements.

• the momentum compaction factor.

Which we do have some control over in the lattice design.  Larger is better, 

but if the momentum compaction factor is too large, a very high RF voltage is 

needed to achieve the specified bunch length.  Also, the synchrotron tune 

becomes large, which can cause problems with synchro-betatron 

resonances.

Microwave instability threshold for the ILC damping rings

Work to determine the single-bunch instability thresholds in the ILC damping 
rings is planned; but at present, we do not have an impedance model.

The only parameter we can really apply to control the microwave instability 
threshold is the momentum compaction factor.  The question is, what is the 
appropriate value to aim for in the lattice design?

We resort to the Keil-Schnell-Boussard criterion to make a rough estimate 
for some lattice designs.

Lattice Energy α σδ σ N
Impedance 
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Achieving an impedance ~ 100 mΩ could be possible, but challenging.

Lattice Energy αp σδ σz N0

Impedance 

threshold

OCS 5 GeV 1.62×10-4 1.29×10-3 6 mm 2×1010 134 mΩ

BRU 3.74 GeV 11.9×10-4 0.97×10-3 9 mm 2×1010 622 mΩ

MCH 5 GeV 4.09×10-4 1.30×10-3 9 mm 2×1010 510 mΩ

TESLA 5 GeV 1.22×10-4 1.29×10-3 6 mm 2×1010 100 mΩ



CSR instability

As well as the interacting with components in the vacuum chamber, a bunch 
of particles can interact with the radiation that it produces in bending 
magnets.  Normally, this is a weak effect; but if there is significant radiation 
at wavelengths comparable to the bunch length, then the interaction can 
become coherent.  The bunch starts to emit radiation as a single large 
particle, which leads to an enhancement in the production of the radiation by 
a factor N (the number of particles in the bunch, ~ 1010).

Long-wavelength radiation (with frequency below cut-off) cannot propagate 
in narrow vacuum chambers, with diameter of a few cm.  Since bunches in 
electron storage rings typically have lengths of a cm or more, this usually 

39 Lecture 8: Single-Bunch InstabilitiesDamping Ring Designs and Issues

electron storage rings typically have lengths of a cm or more, this usually 
means that the radiation interaction is not a problem in storage rings.

However, in some circumstances, "microbunching" can occur, which can 
result in coherent synchrotron radiation (CSR) instability.

CSR instability is expected not to be a problem in the ILC damping rings.  
However, CSR effects could be significant for the bunch compressors 
(depending on the design), where the bunch length is reduced to between 
200 – 300 µm.

The Panofsky-Wenzel theorem and transverse wake fields

Maxwell's equations impose a relationship between the transverse and 
longitudinal forces on a particle in a bunch, resulting from the 
electromagnetic fields:

This is known as the Panofsky-Wenzel theorem.

A consequence of the Panofsky-Wenzel theorem is that if there exists a 
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A consequence of the Panofsky-Wenzel theorem is that if there exists a 
longitudinal wake field that has some transverse dependence, then there 
must accompany it a transverse wake field, with some longitudinal 
dependence.

In general, we expect transverse wake fields to accompany the longitudinal 
wake fields in a storage ring.



Transverse single-bunch instabilities

For longitudinal instabilities, we developed a model based on a "coasting 
beam", which we applied to a bunched beam on the grounds that the mode 
number n was usually large enough, that the bunch length was large 

compared to the length scale of the unstable density perturbation.

For transverse instabilities, lower-order modes can often be important, so 
we need to make some modifications in our approach.  However, the 
starting point is essentially the same: we try to find the dynamical behaviour 
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starting point is essentially the same: we try to find the dynamical behaviour 
of a perturbed distribution, using the Vlasov equation.

Transverse single-bunch instabilities

To analyse the transverse dynamics, we write down the Vlasov equation in 
the transverse coordinates (y,py) and the longitudinal coordinates (z,δ):

where we assume that the distribution Ψ can be written as:
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Note that we describe the distribution in terms of "polar" coordinates in 
phase space (which, in the transverse case, are action-angle variables):
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Transverse single-bunch instabilities

The transverse perturbation can be represented by a dipole mode:

The longitudinal perturbation is represented as an azimuthal mode, with 
mode number l:

In the absence of any wake fields, the mode frequencies are just given by 
the synchrotron and betatron tunes, so that:
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the synchrotron and betatron tunes, so that:

Without wake fields, the action Jy and the longitudinal amplitude r are 

constant, so the Vlasov equation takes the form:

which gives:
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Transverse single-bunch instabilities
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From A. Chao, "Physics of collective beam instabilities in high energy 
accelerators", Wiley, 1993.



Transverse single-bunch instabilities

The presence of transverse wake fields will lead to a tune shift, defined by:

Note that in the limit of zero transverse wake fields:
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An unstable mode will be indicated by a tune shift having a positive 
imaginary component.

The tune shifts for the various azimuthal modes are found, for given bunch 
distributions and wake field, from the Vlasov equation.  Finding the solution 
for even simple distributions and wake fields tends to be rather complicated, 
and those interested in the details are referred to Chao (1993).

Transverse mode-coupling instability

Typically, we find that as the bunch current is increased, the mode 
frequencies shift by different amounts, and that an instability occurs when 
two modes "cross".

This type of instability is known as the "transverse mode-coupling instability" 
(TMCI).
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From A. Chao, "Physics of collective 
beam instabilities in high energy 
accelerators", Wiley, 1993.



Transverse mode-coupling instability

TMCI is a potential concern for the ILC damping rings; careful design and 
construction of the vacuum chamber will be needed to keep the transverse 
wake fields small.

OCS TESLA
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Calculations of TMCI thresholds in two designs for the ILC damping rings (by Sam Heifets).  The 
bunch current at the nominal maximum bunch population of 2×1010 particles is shown by a red 
line in each case.

Single-bunch instabilities: summary

Beam instabilities show complicated dynamics.  The basic equation describing 
the evolution of a distribution is the Vlasov equation, which is difficult to solve in 
practical cases.

A range of techniques have been developed to find solutions to the Vlasov 
equation in situations of interest.  These include simplifying approximations 
(perturbation theory) and numerical methods.  Generally, it is advisable to cross-
check results from different techniques.

Perturbations in the bunch distribution tend to be smoothed out by the natural 
motions of particles in the bunch (Landau damping).  This is most effective if 
there is a large spread in dynamical behaviour across particles within the bunch 

48 Lecture 8: Single-Bunch InstabilitiesDamping Ring Designs and Issues

there is a large spread in dynamical behaviour across particles within the bunch 
(e.g. variation in revolution frequency arising from the energy spread).

If perturbations in the bunch distribution resonate with the impedance, then an 
instability can develop.  The linearised Vlasov equation can be used to estimate 
the intensity threshold at which the instability occurs (if the ring impedance is 
known), but cannot describe the behaviour above threshold.

If the ring impedance is not known, then we can make some crude estimates for 
the general properties of the impedance, and estimate the impedance threshold 
using, for example, the Keil-Schnell-Boussard criterion.


