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Outline

• Requirements to RF field detector
• RF field detection methodology
• Reduce the noises and compensate the drifts in RF 

field detection
• RF actuation
• Appendix

– Typical hardware for RF field detection 
• Mixer
• Analog to Digital Converter (ADC)



Stefan Simrock, Zheqiao Geng    4th LC School, Huairou, Beijing, China, 2009   LLRF & HPRF 3

Requirements to RF Field Detector
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Context of the RF Field Detector
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Recall: Transfer Function from Detector Noise to 
Cavity Field
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• Low frequency noise of 
detector is transferred 
directly to the cavity 
output; high frequency 
noise is filtered by 
closed loop bandwidth 
and detector bandwidth

• Reducing the detector 
noise will be essential to 
get highly stable cavity 
field!
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Requirements to the RF Field Detector

• The requirements of the RF field detector should be 
derived from the overall requirements to LLRF system

• Functional requirements: detect the amplitude and 
phase of RF field for each cavity in real time

• Quality requirements: 
– Field detection bandwidth
– Amplitude and phase error
– Non-linearity

Example for FLASH:
• Field detection bandwidth: 10 MHz
• Amplitude and phase error: < 10^-4
• Non-linearity: at full scale of the measurement, the amplitude compression 
should be less than 1% and phase shift should be less than 0.5 degree
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RF Field Detection Methodology
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Direct Amplitude and Phase Detection

• Simple system structure
• Linear for small phase errors
• Phase measurement is influenced by the amplitude error of the 

RF or LO signal
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Analog I/Q Detection
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Analog I/Q Detection

• Phase measurement is linear for the 
whole range of 360º

• Low efforts of digital processing
• Disadvantages:

– Phase and amplitude imbalance
– DC offset

Amplitude 
imbalance

Phase 
imbalance

DC 
offset
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IQ Sampling

• Digital I/Q detection
• IF and clock signal should be 

synchronized
• Alternating sample give I and 

Q components of the cavity 
field
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IQ Sampling at FLASH
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IQ Sampling
• Advantages

– Get rid of the imbalance effect 
compared with the analog I/Q 
demodulator

• Problems
– DC offset caused by the mixer
– Nonlinearities in the analog front-

end or the ADC generate harmonics, 
which will be aliased to the IF 
frequency
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IQ Sampling

• The phase of nth harmonic changes 
n times faster than the fundamental 
phase

• Phase shifts in the cavity due to 
microphonics and Lorenz force 
detuning will lead to a time 
dependent error

A
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Non-IQ Sampling

• Compared with IQ sampling, non-IQ sampling is aimed to avoid the 
harmonics aliasing by shifting the sampling frequency slightly from 
4 times of the IF frequency

πϕ 2⋅=Δ
n
m

Example: m=4, n=15
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Non-IQ Sampling

• Fourier series decomposition of the RF signal

• Demodulation algorithm:
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Non-IQ Sampling

• Most harmonics no longer line up with IF frequency. Influence 
due to the higher order harmonics and DC offset can be 
reduced with band pass filter.

• The algorithm for demodulation need more computation power 
and will cause larger latency
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Direct Sampling

• Example for available ADC: ADS5474, 14 bits, 
400MSPS, 1.4GHz bandwidth

• Under-sampling
• Non-IQ sampling (m,n have the same meaning as the

discussion of non-IQ sampling)
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Direct Sampling
• Advantage: no down converter needed
• Essential problems: ADC measurement noise is sensitive to the 

clock jitter due to the high input RF frequency

( )rmsjitterRFjitter tfSNR _10 2log20 π−=
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Digital Down Conversion

• Principle same as analog I/Q demodulator
• NCO: Numerical Controlled Oscillator
• Digital mixer: multiplication operation in 

processors (in FPGA can be multiplier 
cores)

• Digital low pass filter, can be IIR, FIR or 
CIC filter



Stefan Simrock, Zheqiao Geng    4th LC School, Huairou, Beijing, China, 2009   LLRF & HPRF 21

Reduce the Noises and Compensate 
the Drifts in RF Field Detection



Stefan Simrock, Zheqiao Geng    4th LC School, Huairou, Beijing, China, 2009   LLRF & HPRF 22

Noise and Drift Sources for RF Detection

• Slow phase and amplitude drifts: 
– Cavity pick up cables 
– Down converter
– LO low frequency phase noise

• Fast phase and amplitude jitters:
– Thermal noise
– LO high frequency phase noise
– ADC noise
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Reduce the High Frequency Noise

• Select components of 
down converter with 
low noise level

• Filtering in RF side
• ADC oversampling
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Drift and Fluctuation Correction

Reference tracking
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Drift and Fluctuation Correction

Measurement chain drift calibration
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RF Actuation
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RF Actuator

• Change the amplitude and phase of RF driving signal 
and perform frequency up-conversion 

• Widely used solutions:
– Direct up-conversion
– IF up-conversion
– Single sideband up-conversion
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Direct Up-conversion
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• Easy to implement
• Suffer from the DC offset in I/Q base band signals 

and the phase and amplitude imbalance of the vector 
modulator



Stefan Simrock, Zheqiao Geng    4th LC School, Huairou, Beijing, China, 2009   LLRF & HPRF 29

IF Up-conversion

• Band pass filter after the DAC can remove the DC offset
• Band pass filter after the mixer is necessary
• If IF is small, filter design will be critical



Stefan Simrock, Zheqiao Geng    4th LC School, Huairou, Beijing, China, 2009   LLRF & HPRF 30

Single Sideband Up-conversion
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Summary

In this part, we have learnt:

• Principles and characteristics of several RF field detection methods

• Ideas to correct the noise and drift of the RF field detector

• Principles for several RF actuation (up-conversion) methods
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Appendix:
Typical Hardware for RF Field 

Detection
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Mixer
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Mixer
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Mixer
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Mixer
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Analog to Digital Converter

What is an ADC?
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Analog to Digital Converter

Least Significant Bit (LSB) and Most Significant Bit (MSB)
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Analog to Digital Converter
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Analog to Digital Converter

ADC noise source: Quantization noise
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Analog to Digital Converter

ADC noise source: Clock jitter

( )rmsjitterRFjitter tfSNR _10 2log20 π−=
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Analog to Digital Converter

ADC noise source: Noisy components or circuitry



Stefan Simrock, Zheqiao Geng    4th LC School, Huairou, Beijing, China, 2009   LLRF & HPRF 44

Analog to Digital Converter

Signal to Noise Ratio (SNR) of ADC:
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Analog to Digital Converter

Differential Non-Linearity (DNL): “small scale” code to 
code errors



Stefan Simrock, Zheqiao Geng    4th LC School, Huairou, Beijing, China, 2009   LLRF & HPRF 46

Analog to Digital Converter

Integral Non-Linearity (INL): “large scale” overall transfer 
function error


