

Klystron

Possible RF Sources

Klystron todayFrequency Range:Output Power:

Klystron Gun Voltage: DC:

~350MHz to ~17GHz up to ~1.3MW Pulsed: up to ~200MW at ~1ms up to ~10MW at ~1ms ~100kV Pulsed: ~600kV at ~1ms

 \sim 130kV at \sim 1ms

• Tetrode, Triode: Frequency up to ~200-300MHz, ~10kW

CW:

- IOT: Frequency up to ~1.3GHz, Power: ~30kW, HOM IOT maybe 5MW in the future
- Gyroklystron: Freezency above ~20GHz, ~10MW
- Gyrotron: Frequency typical 100GHz, ~1MW
- Magnetron: Oscillator, ~10MW
- Travelling Wave Tube, Magnicon, Orbitron, Amplicon etc.

Not for ILC

- The klystron principle will be explained
- A basic and simplified theory can be found in the appendix
- Today klystrons or subcomponents of klystrons are designed and calculated making use of different computer codes (Egun, FCI, Mafia, Microwave Studio, Ansys, Magic, special codes developed by klystron manufacturers ...)

Klystron Theory

• PIC codes have been developed recently

ilc

Example: 150MW, 3GHz S-Band Klystron

Klystron Principle

- The cathode is heated by the heater to $\sim 1000^{\circ}$ C.
- The cathode is then charged (pulsed or DC) to several 100kV.
- Electrons are accelerated form the cathode towards the anode at ground, which is isolated from the cathode by the high voltage ceramics.
- The electron beam passes the anode hole and drifts in the drift tube to the collector.
- •The beam is focussed by a bucking coil and a solenoid.
- By applying RF power to the RF input cavity the beam is velocity modulated.
- On its way to the output cavity the velocity modulation converts to a density modulation. This effect is reinforced by additional buncher and gain cavities.
- The density modulation in the output cavity excites a strong RF oscillation in the output cavity.
- RF power is coupled out via the output waveguides and the windows.
- Vacuum pumps sustain the high vacuum in the klystron envelope.
- The beam is finally dumped in the collector, where it generates X-rays which must be shielded by lead.

Klystron Perveance

 Perveance p = I / U^{3/2} (I = klystron current, U = Klystron voltage) is a parameter of the klystron gun determined by the gun geometry (Theory see Appendix)

İİĹ

• Example: THALES TH2104C 5MW, 1.3GHz Klystron U=128kV I=89A $p=1.94*10^{-6}$ A/V^{3/2} (mperveance=1.94)

Klystron Output Power

116

Example: RF output power of a 3GHz (S-band) klystron as function of the voltage

Klystron Efficiency

• Efficiency of a klystron depends on bunching and therefore on space charge forces

- Lower space forces allow for easier bunching and more efficiency
- Decreasing the charge density (current) and increasing the stiffness (voltage) of the beam increase the efficiency
- Higher voltage and lower current, thus lower perveance would lead to higher efficiency

Rule of thumb formula from fit to experimental data

$$\eta = 0.85 - 2 \times 10^5 \times p$$

Klystron Gun Breakdown Limit

• Disadvantage: higher voltage increase the probability of breakdown

ΪĹ

• The breakdown limit EU depend on the pulse duration

$$E_{max} \times U = 100 \times \tau^{-0.34} (kV)^2 / mm$$

Multibeam Klystron

Idea

Klystron with low perveance:

İİĹ

=> High efficiency but high voltage

Klystron with low perveance and low high voltage

 \Rightarrow low high voltage but low power

Solution

Klystron with many low perveance beams:

=> low perveance per beam thus high efficiency low voltage compared to klystron with single low perveance beam

Multi Beam Klystron THALES TH1801 (1)

Measured performance

iiL

1.3GHz **Operation Frequency:** Cathode Voltage: 117kV **Beam Current:** 131A 3.27 mperveance: Number of Beams: Cathode loading: 5.5A/cm² Max. RF Peak Power: 10**M**W **RF** Pulse Duration: 1.5ms 10Hz **Repetition Rate: RF** Average Power: 150kW Efficiency: 65% Gain: 48.2dB Solenoid Power: 6kW Length: 2.5m ~40000h Lifetime (goal):

Multi Beam Klystron THALES TH1801 (2)

ijĹ

Pulse Waveforms of a Klystron (Voltage, Current, RF Drive Power, RF Output Power)

Multi Beam Klystron THALES TH1801 (3)

ΪĹ

Transfer Curves: RF output as function of RF drive power with klystron voltage as parameter

Multi Beam Klystron CPI VKL-8301(1)

Design Features:

- 6 beams
- HOM input and output cavity
- Individual intermediate FM cavities
- Cathode loading: <2.5A/cm² lifetime prediction: >100000h

Drawing of the Klystron

Multi Beam Klystron CPI VKL-8301 (2)

Specified Operating Parameters

Peak Power Outpu	.t	10	MW (min)
Ave. Power Outpu	t	150	kW (min)
Beam Voltage		114	kV (nom)
Beam Current		131	A (nom)
mperveance		3.40	
Frequency		1300	MHz
Gain		47	dB (min)
Efficiency		67	% (nom)
Cathode Loading		2.0	A/cm ²
Dimensions H	H, Ø:	2.3 by	1.0 meters
Weight		2000	lbs

4

Electromagnet

ilc

Solenoid Power Coil Voltage Weight

kW (max) 200 V (max) 2800 lbs

Klystron during construction

Multi Beam Klystron CPI VKL-8301 (3)

Measured Operating Parameters at CPI at 500ms pulsewidth

Peak Power Output	10	MW
Ave. Power Output	150	kW
Beam Voltage	120	kV
Beam Current	139	А
mperveance	3.34	
Frequency	1300	MHz
Gain (saturated)	49	dB
Efficiency	60	%

Beam Transmission

DC, no RF	99.5	%
at Saturation	98.5	%

Klystron ready for shipment

Klystron CPI

ĪĪĻ

Output power as function of frequency

The TOSHIBA E3736 MBK (1)

Design Features:

• 6 beams

ΪĻ

- Ring shaped cavities
- Cathode loading: <2.1 A/cm²

Design Layout

The TOSHIBA E3736 MBK (2)

Measured performance

Voltage: 115kV Current: 135A mperveance: 3.46 Output Power: 10.4MW Efficiency: 67% Pulse duration: 1.5ms Rep. Rate: 10Hz

Klystron ready for shipment

• Horizontal klystrons are already in use e.g. the LEP klystrons at CERN or the B-factory klystrons at SLAC

Aspects

- Space in tunnel
- Transportation of klystron and pulse transformer in the tunnel
- Exchange of the klystrons
- Ease of interchange of different types of klystrons to pulse transformer tank and to waveguide distribution system
- X-ray shielding
- Oil leakage

Horizontal MBK

ΪĹ

Horizontal MBK

MBK gun and pulse transformer

X-Ray shielding

Klystron Replacement for the TESLA Linear Collider

- The klystron lifetime will be determined most likely by the cathode lifetime since other klystron components are operated at a moderate level
- With a klystron lifetime of 40000h and an operation time of 5000h per year 8 klystrons must be replaced during a monthly access day

İİĹ

- An overhead of 12 klystrons will be installed, therefore no degradation of accelerator performance is expected between two access days
- Teams of 3-4 people will exchange a klystron within a few hours; klystrons will be equipped with connectors (HV, controls, cooling, waveguides) which allow fast exchange of a klystron in the tunnel

