Problems Lecture 1: Linac Basics

1) Calculate the relative longitudinal motion of two particles with an energy of 9 GeV and a difference of 3% over a distance of 21 km .
2) Calculate the solutions to Hill's equation for $K(s)=K_{0}>0$.
3) Calculate the solutions to Hill's equation for $K(s)=0$ assuming $\beta(s=0)=\beta_{0}$ and $\beta^{\prime}(s=0)=0$.
4) How much energy is roughly stored in one ILC cavity at nominal gradient?

Solutions: Linac Basics

1) We calculate

$$
\gamma=\frac{E_{0}}{m c^{2}} \approx \frac{9 \mathrm{GeV}}{0.511 \mathrm{MeV}} \approx 18000
$$

then we use

$$
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}
$$

to find an approximation for β

$$
\beta \approx 1-\frac{1}{2 \gamma^{2}} \approx 1-1.5 \times 10^{-9}
$$

over the length of a linac 21 km the longitudinal delay compared to light is $\approx 32 \mu \mathrm{~m}$ for two particles which have a energy difference of $\Delta \gamma$ the relative longitudinal motion would be

$$
\beta_{1}-\beta_{2} \approx \frac{1}{2 \gamma^{2}}-\frac{1}{2(\gamma+\Delta \gamma)^{2}} \approx \frac{\Delta \gamma}{\gamma^{2}}
$$

for an example of 3% the motion is $\approx 1 \mu \mathrm{~m} \ll \sigma_{z}$
Note: Due to the acceleration the effect is even smaller

Solutions: Linac Basics

2) We use $K(s)=$ const >0.

- We know the solution is a harmonic oszillation with a fixed amplitude, which we call β_{0}
- We now need to check that this fulfills the differential equation for β
- Ansatz: $\beta=\beta_{0}, \beta^{\prime}=0$:

$$
\begin{aligned}
\frac{\beta^{\prime \prime} \beta}{2} & -\frac{\beta^{\prime 2}}{4}+K \beta^{2}=1 \\
& \Rightarrow K \beta_{0}^{2}=1
\end{aligned}
$$

Hence

$$
\beta_{0}=\frac{1}{\sqrt{K}}
$$

Solutions: Linac Basics

3) $K=0$

Ansatz: β is a polynom of second order

- We use $\beta^{\prime}(s=0)=0, \beta(s)=\beta_{0}+\frac{s^{2}}{\beta_{0}}$

$$
\begin{gathered}
\frac{\beta^{\prime \prime} \beta}{2}-\frac{\beta^{\prime 2}}{4}+K \beta^{2} \\
\Rightarrow \frac{\beta^{\prime \prime} \beta}{2}-\frac{\beta^{\prime 2}}{4}=1 \\
\Rightarrow \frac{1}{2}\left(\beta_{0}+\frac{s^{2}}{\beta_{0}}\right)\left(\frac{2}{\beta_{0}}\right)-\frac{1}{4}\left(\beta_{0}+\frac{2 s}{\beta_{0}}\right)\left(\frac{2 s}{\beta_{0}}\right)=1 \\
\Rightarrow 1+\frac{s^{2}}{\beta_{0}^{2}}-\frac{s^{2}}{\beta_{0}^{2}}=1
\end{gathered}
$$

4) Assuming $R / Q=1 \mathrm{k} \Omega / \mathrm{m}$ we find approximately 120 J

Problems Lecture 2: Lattice Design

1) A transport lattice with no acceleration consists of FODO cells with quadrupole spacing $L=10 \mathrm{~m}$ and focal distance $f=10 \mathrm{~m}$. How large is the phase advance?
2) Estimate the RMS beam jitter at a position with $\beta\left(s_{2}\right)=1 \mathrm{~m}$ if one quadrupole jitters 450° upstream with a focal length $f=7 \mathrm{~m}$ and $\beta\left(s_{1}\right)=10 \mathrm{~m}$. The quadrupole jitter amplitude has an RMS of $1 \mu \mathrm{~m}$.
3) Calculate the average beta-function in a thin lens FODO lattice as a function of $\hat{\beta}, \check{\beta}$ and L / f
How much does a cavity with tilt $\theta \ll 1$ deflect the beam?

Solutions

1) We use

$$
\begin{gathered}
\cos \mu=1-\frac{L^{2}}{2 f^{2}} \\
\Rightarrow \cos \mu=1-\frac{1}{2} \\
\Rightarrow \mu=\arccos \left(\frac{1}{2}\right)=60^{\circ}
\end{gathered}
$$

2) The angular deflection is given by the offset δ and the focal strength f

$$
y^{\prime}=\frac{\delta}{f}
$$

we transform into nromalised phase space

$$
y_{N}^{\prime}=\sqrt{\beta\left(s_{1}\right)} \frac{\delta}{f}
$$

450° downstream this is

$$
y_{N}=\sqrt{\beta\left(s_{1}\right)} \frac{\delta}{f}
$$

which translates into

$$
y=\sqrt{\beta\left(s_{1}\right) \beta\left(s_{2}\right)} \frac{\delta}{f}
$$

inserting number we find

$$
y \approx 0.45 \delta
$$

hence the RMS jitter $\sigma_{y, j i t t}=0.45 \mu \mathrm{~m}$.

Solutions

3) We will integrate from the centre of a defocusing quadrupole (at $s=0$) to the centre of the next focusing quadrupole (at $s=L$). In the centre of the defocusing quadrupole we have $\beta=\check{\beta}$ and $\alpha=0$. We calculate the Twiss parameters immediately after the quadrupole (at $\epsilon \rightarrow 0$):

$$
\begin{gathered}
\left(\begin{array}{cc}
\beta(\epsilon) & -\alpha(\epsilon) \\
-\alpha(\epsilon) & \gamma(\epsilon)
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
1 /(2 f) & 1
\end{array}\right)\left(\begin{array}{cc}
\check{\beta} & 0 \\
0 & 1 / \check{\beta}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 /(2 f) \\
0 & 1
\end{array}\right) \\
\Rightarrow\left(\begin{array}{cc}
\beta(\epsilon) & -\alpha(\epsilon) \\
-\alpha(\epsilon) & \gamma(\epsilon)
\end{array}\right)=\left(\begin{array}{cc}
\check{\beta} & \check{\beta} /(2 f) \\
\check{\beta} /(2 f) & 1 / \check{\beta}+\check{\beta} /(2 f)^{2}
\end{array}\right)
\end{gathered}
$$

now we calculate beta along a drift using

$$
\begin{gathered}
\left(\begin{array}{cc}
\beta(s) & -\alpha(s) \\
-\alpha(s) & \gamma(s)
\end{array}\right)=\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\check{\beta} & \check{\beta} /(2 f) \\
\check{\beta} /(2 f) & 1 / \check{\beta}+\check{\beta} /(2 f)^{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
L & 1
\end{array}\right) \\
\beta(s)=\check{\beta}+\frac{\check{\beta}}{f} s+\left(\frac{1}{\check{\beta}}+\frac{\check{\beta}}{4 f^{2}}\right) s^{2} \\
\langle\beta\rangle=\frac{1}{L} \int_{0}^{L} \beta(s) d s=\check{\beta}+\frac{\check{\beta}}{2 f} L+\frac{L^{2}}{3}\left(\frac{1}{\check{\beta}}+\frac{\check{\beta}}{4 f^{2}}\right)
\end{gathered}
$$

to avoid to much calculation we exploit

$$
\beta(L)=\hat{\beta}=\check{\beta}+\frac{\check{\beta}}{f} L+\left(\frac{1}{\check{\beta}}+\frac{\check{\beta}}{4 f^{2}}\right) L^{2}
$$

hence

$$
\langle\beta\rangle=\frac{2}{3} \check{\beta}+\frac{1}{3} \check{\beta}+\frac{L}{6 f} \check{\beta}
$$

Solutions

4) The deflection of the beam by a single structure of length L and gradient G with tilt $\theta \ll 1$ is

$$
\delta y^{\prime}=\frac{e G L}{2} \frac{1}{E} \theta=\frac{\delta}{2} \theta
$$

δ is the relative acceleration by the cavity.
Relevant is the kick in the normalised coordinates

$$
\sqrt{\gamma}\left(\begin{array}{cc}
\frac{1}{\sqrt{\beta}} & 0 \\
\frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta}
\end{array}\right)\binom{0}{\delta y^{\prime}}=\sqrt{\gamma}\binom{0}{\sqrt{\beta} \delta y^{\prime}}=\sqrt{\beta} \frac{\delta}{2} \theta\binom{0}{1}
$$

For the emittance the square of the kick is important

