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Remember: Multi-Bunch Wakefields

• Long-range transverse
wakefields have the form

W⊥(z) =

∞∑

i
2ki sin



2π
z

λi



 exp


− πz

λiQi





• In practice need to con-
sider only a limited number
of modes

• There impact can be re-
duced by detuning and
damping
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Remember: Two-Particle Wakefield Model

• Assume bunch can be represented by two particles and constant K(s) = 1/β 2

- second particle is kicked by transverse wakefield

- initial oscillation

x′′
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x1 = 0 x′′

2 +
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Ne2W⊥

PLc
x1
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

• Solution is simple with an ansatz

x2 = x0 cos



s

β



 +




x0Ne2W⊥β

2E
s



 sin



s

β





⇒ Amplitude of second particle oscillation is growing

⇒ The bunch charge and length matter as well as the lattice

⇒ Have a closer look into wakefields
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Direct Bunch-to-Bunch Effect

• We assume that W (s), β(s) or E(s) depend on s

⇒ analytical full solution of differential equation is tough

⇒ use a perturbative approach

• Assume that the effect per betatron oscillation is small

• Complex normalised oscillation amplitude with no wake

y1(s) = y1,0 exp



−i
∫ s

0

1

β(s′)
ds′





at a following bunch

y2(s) ≈


y2,0 +
∫ s

0
i
y1,0W⊥(z, s′)Ne2β(s′)

2E(s′)
ds′





exp



−i
∫ s

0

1

β(s′)
ds′



 (1)

• In the following, we will ignore the phase factor and only consider the normalised
complex oscillation amplitudes yi
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Matrix Formalism

• If more than two bunches we need to account for indirect effects

• Define aj−k to be the direct change of the final amplitude yj,f of bunch j that is
induced by the initial offset yk of bunch k

• aj−k is given by integrating to the end of the main linac ŝ

aj−k = i
∫ ŝ

0

W (zj − zk, s)Ne2β(s)

2E(s)
ds (2)

• For n bunches define matrix a

ajk = iaj−k for j > k

and otherwise ajk = 0

• This matrix describes the direct impact of the initial offset of each bunch on the
final offset of each other bunch

$yf = (1 + a)$yi

4



Full Bunch-to-Bunch Effect

• Define A the matrix that gives the impact of each bunch on each other including
indirect effects

$yf = A$yi

• We can develop it iteratively

$yf = lim
m→∞

(

1 +
a

m

)m
$yi

hence
A = lim

m→∞

(

1 +
a

m

)m

⇒ A = exp(a)

note that one can develop

A = exp(a) =
∞∑

k=0

ak

k!
=

n−1∑

k=0

ak

k!

Here, we use an = 0 since ajk = 0 for j ≤ k.
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Example for Geometric Wakefields

• Use CLIC long-range wakefield model from optimisation
- field at second bunch 6.6 kV/pCm2

- afterwards field is zero

• Calculate factors ak

ak =
∑

i

Liβi

2Ei
W (zk)Ne2 ≈ 380 m2GeV−1W (zk)Ne2

yields
a1 ≈ 1.5 ak )=1 = 0

for j ≥ k one finds

Ajk =
(ia1)

(j−k)

(j − k)!
(3)
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Some Detail

• Example with four bunches
- direct effects matrix

a =





0 0 0 0
ia1 0 0 0
ia2 ia1 0 0
ia3 ia2 ia1 0





- development for indirect effects (only kick on second bunch)

1 +
a

m
=





1 0 0 0
ia1/m 1 0 0

0 ia1/m 1 0
0 0 ia1/m 1





- development for Taylor series

a =





0 0 0 0
ia1 0 0 0
0 ia1 0 0
0 0 ia1 0





a2 =





0 0 0 0
0 0 0

−a2
1 0 0 0

0 −a2
1 0 0





a3 =





0 0 0 0
0 0 0
0 0 0







Comparison to Simulation

• We calculate and simulate
the offset of a train with co-
herent initial offset at the
end of the linac

⇒ The agreement between
simulation and calculation
is good (no surprise)

⇒ The first few bunches are
scattered but on the flat
top we observe a phase
shift
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Understanding the Result

• We had calculated the coefficients of the matrix A

Ajk =
(ia1)

(j−k)

(j − k)!
(4)

for a coherent offset the amplitude of bunch j is given by
j∑

k=0
Ajk =

j∑

k=0

(ia1)
(j−k)

(j − k)!

⇒
j∑

k=0
Ajk =

j∑

k=0

(ia1)
(k)

(k)!

this is obviously the definition of the exp exp(ia1), with good convergence already
after only a few bunches
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Impact of Beam Jitter

• Coherent jitter of the whole train is important
- RMS final offsets of the bunches is

Fc =
$yf$y∗f
$yi$y∗i

⇒ Fc =
(A$y0)(A$y0)∗

$yi$y∗i

⇒ Fc =
1

n

∑

k

∣∣∣∣∣∣∣

∑

j
Akj

∣∣∣∣∣∣∣

2

In our case Fc ≈ 1

• Random bunch-to-bunch jitter

Frms =
∑n−1

k=0
∑k

j=1 Aj,kA∗
j,k

n

In our case Frms ≈
(
1 +

∑n−1
i=0 A2

i,0

)
≈ 4.9

⇒ at the limit of what is acceptable
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Some Remarks

• The impact of two wakefields is given by

A = A1A2

⇒ The order of the kicks does not matter

• It is usually sufficient to know the first column, the other follow
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Bunches with Energy Spread

• If bunches are not point-
like the results change

- an energy spread leads
to a more stable case

• Simulations show
- point-like bunches

- bunches with energy
spread due to bunch
length

- including also initial en-
ergy spread
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⇒ Point-like bunches is a pessimistic assumption for the dynamic effects
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Multi-Bunch Effects in ILC

Average beta-function is
β̄ =

2

3



1 +
L

6f



 β̌ +
1

3
β̂

for ILC we find β̄ ≈ 66 m
Effective gradient is G ≈ 30 MV/m

∫ Ef

E0

β̄

2E

dE

eG
=
β̄

2eG
(ln(Ef) − ln(E0))

using E0 = 15 GeV and Ef = 250 GeV

a = 3660 m2/GeV
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Long-Range Wakefields (ILC)

• Analytic calculations show that some
modes can be dangerous
⇒ would like to mitigate the effect

f [GHz] Q Frms

1.6506 19.98 7e4 0.0008
1.6991 301.86 5e4 0.29
1.7252 423.41 2e4 0.127
1.7545 59.86 2e4 0.002
1.7831 49.2 7.5e3 0.0004
1.7949 21.70 1e4 0.0001
1.8342 13.28 5e4 0.0002
1.8509 11.26 2.5e4 —
1.8643 191.56 5e4 0.06
1.8731 255.71 7e4 0.3
1.8795 50.8 1e5 0.007
2.5630 42.41 1e5 0.003
2.5704 20.05 1e5 0.0007
2.5751 961.28 5e4 15.7

14



Example: Bad Mode

• One of the modes is par-
ticularly bad

• The indirect effect is very
important
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Example: Bad Mode

• When the amplitude of the
direct effect decays the in-
direct effect still grows
⇒ indirect effects are in-

deed important
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Detuning

To make our life simple we neglect damping
We split the wakefield W (z) = a sin(kz) into two modes

W (z) = W0
sin((k + ∆)z) + sin((k −∆)z)

2

the resulting amplitude is
W (z) = W0 sin(kz) cos(∆z)

integrating over a Gaussian distribution yields

W (z) = W0 sin(kz)
∫ ∞
0

2√
2πσ∆

exp



− ∆2

2σ2
∆



 cos(∆z)d∆

⇒ W (z) = W0 sin(kz) exp



−(z∆)2

2





⇒ The bad mode is reduced to Frms = 0.14 already for a detuning of 10−4
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Details of the Calculation

Use
sin((k + ∆)z) = sin(kz) cos(∆z) + cos(kz) sin(∆z)

and
sin((k −∆)z) = sin(kz) cos(∆z) − cos(kz) sin(∆z)

⇒ sin((k+∆)z)+sin((k−∆)z) = sin(kz) cos(∆z)+cos(kz) sin(∆z)+sin(kz) cos(∆z)−cos(kz) sin(∆z)

⇒ sin((k + ∆)z) + sin((k −∆)z) = 2 sin(kz) cos(∆z)

Also
∫ ∞
0

exp(−a2x2) cos(bx) =

√
π

2a
exp



− b2

4a2




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Example: Bad Mode

• Due to the large bunch dis-
tance even little detuning
is efficient
⇒ the mode completely

disappears for the as-
sumed detuning of 0.1%

• But the detuning is random
from cavity to cavity
⇒ effective detuning will

be less
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Beam Jitter

• Perfect machines used

• 100 machines simulated
- TESLA wakefields with

0.1% RMS frequency
spread

- beam set to an offset

- 5% bunch-to-bunch
charge variations in
uncorrected test beam

- additional relative emit-
tance growth due to
multi-bunch is deter-
mined
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Uneven Damping

• We had realised that ILC uses different phase advance in the two planes
• One of the reasons are long-range wakefields
• The beam jitters much more in the horizontal plane(due to the larger emittance)
• If the damping is not in the horizontal and vertical plane and is uneven this may

lead to vertical wakefield kicks due to the horizontal oscillation
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Reminder: Static Multi-Bunch Effects (ILC)
• Simulation of long-range

transverse wakefield ef-
fects

- with no detuning

- with random detuning
from cavity to cavity

⇒ Cavity detuning is essen-
tial

⇒ Need to ensure that this
detuning is present

- it does happen naturally

- but also if you depend
on it?

• Note results depend on
exact frequency of trans-
verse modes

- some uncertainty in the
prediction

- but not a worry with de-
tuning
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All main linac cavities are scattered by 500 µm

Long-range wakefields are represented by a number of
RF modes

W⊥(z) =
n∑

i=0
ai sin




2πz

λi



 exp


− πz

λiQi





22



Multi-Bunch Emittance Growth (ILC)

• Standard errors used

• DFS applied

• 100 machines simulated
- TESLA wakefields with

0.1% RMS frequency
spread

- one-to-one alignment
with full train for each
machine

- 5% bunch-to-bunch
charge variations in
uncorrected test beam
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Simple Estimate of Static Imperfections (CLIC)

• In CLIC
- we misalign all struc-

tures

- perform one-to-one
steering with a multi-
bunch beam

- perform one-to-one
steering with a single
bunch

- compare the emittance
growth
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Resistive Wall Wakefield (CLIC)

• The wakefield is given by

W (z) =
cZ0

πb3

√√√√√
1

Z0σrπz
(5)

with the impedance of the vacuum Z0, beam pipe radius b and the conductivity of
copper σr = 5.8 · 107 Ω−1m−1

• We approximate the structures by averaging the iris radius and length

• Using the matrix formalism we find for initial coherent offset

yN,f ≈ (1 + 0.02i)yall

• We require the effect of the beam pipe in the quadrupoles, drifts and flanges to be
smaller
this yields

b ≥ 3.6 mm

we choose b = 4 mm

• In total we then yield
yN,f ≈ (1 + 0.035i)yall
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Element Misalignments

Consider only the quadrupole beam pipe misalignment, other contributions should
be small.
The calculation is similar to the one for beam jitter, except that the kicks of the ele-
ments add in quadrature.
The RMS bunch position scatter Fs at the end of the linac normalised to the beam
size can be approximated as

Fs =
n∑

j=1

1

n

∑

i

L2
i βi∆2

i

2Ei

1

mc2ε

(
(Wj,sum − 〈Wsum〉)Ne2

)2
(6)

Here, Wj,sum is the wakefield at bunch j produced by a coherent offset of all leading
bunches and 〈Wsum〉 is the average wakefield. For ∆ = 100 µm this yields Fstat ≈ 0.012.
Simulations with point-like bunches yield the same value. If the geometric wakefields
are added the average value remains the same.
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