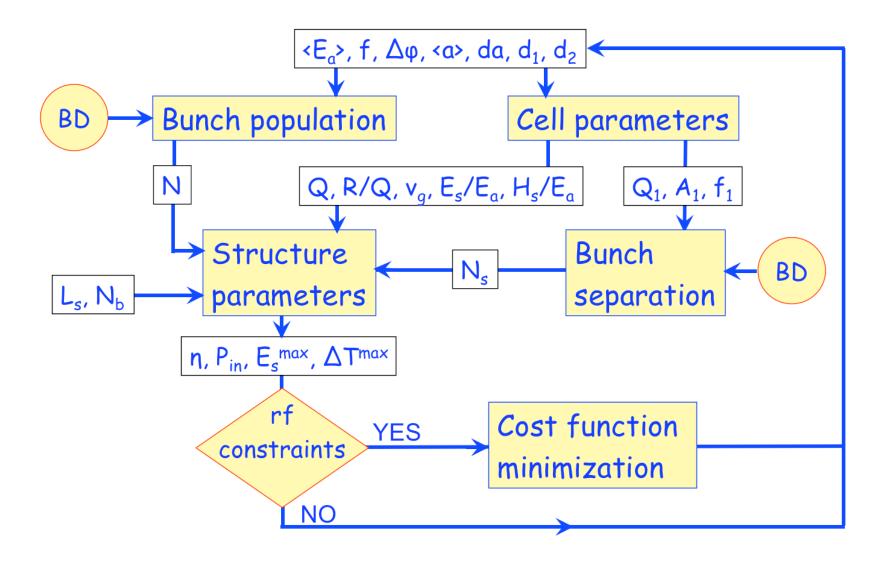
Parameter Optimisation

D. Schulte

Beijing September 2009

Work Flow



Luminosity

Simplified treatment and approximations used throughout

$$\mathcal{L} = H_D \frac{N^2 f_{rep} n_b}{4\pi \sigma_x \sigma_y}$$

$$\mathcal{L} \propto H_D rac{N}{\sqrt{eta_x \epsilon_x} \sqrt{eta_y \epsilon_y}} \eta P$$

$$\epsilon_x = \epsilon_{x,DR} + \epsilon_{x,BC} + \epsilon_{x,BDS} + \dots$$

$$\epsilon_y = \epsilon_{y,DR} + \epsilon_{y,BC} + \epsilon_{y,linac} + \epsilon_{y,BDS} + \epsilon_{y,growth} + \epsilon_{y,offset} \dots$$

$$\sigma_{x,y} \propto \sqrt{\beta_{x,y}\epsilon_{x,y}/\gamma}$$
 $Nf_{rep}n_b \propto \eta P$

typically
$$\epsilon_x \gg \epsilon_y$$
, $\beta_x \gg \beta_y$

Fundamental limitations from

- beam-beam: $N/\sqrt{\beta_x\epsilon_x}$, $N/\sqrt{\beta_x\epsilon_x\beta_y\epsilon_y}$
- emittance generation and preservation: $\sqrt{\beta_x \epsilon_x}$, $\sqrt{\beta_y \epsilon_y}$
- main linac RF: η

Potential Limitations

- Efficiency η : depends on beam current that can be transported Decrease bunch distance \Rightarrow long-range transverse wakefields in main linac Increase bunch charge \Rightarrow short-range transverse and longitudinal wakefields in main linac, other effects
- Horizontal beam size σ_x beam-beam effects, final focus system, damping ring, bunch compressors
- ullet vertical beam size σ_y damping ring, main linac, beam delivery system, bunch compressor, need to collide beams, beam-beam effects
- Will try to show how to derive $L_{bx}(f, a, \sigma_a, G)$

Beam Size Limit at IP

- The vertical beam size had been $\sigma_y = 1 \, \mathrm{nm}$ (BDS)
 - \Rightarrow challenging enough, so keep it $\Rightarrow \epsilon_y = 10 \, \mathrm{nm}$
- Fundamental limit on horizontal beam size arises from beamstrahlung

Two regimes exist depending on beamstrahlung parameter

$$\Upsilon = \frac{2\hbar\omega_c}{3E_0} \propto \frac{N\gamma}{(\sigma_x + \sigma_y)\sigma_z}$$

 $\Upsilon \ll 1$: classical regime, $\Upsilon \gg 1$: quantum regime

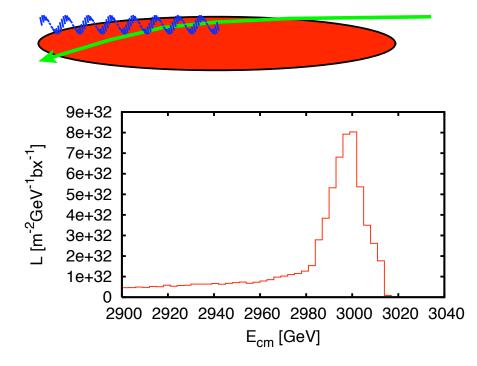
At high energy and high luminosity $\Upsilon\gg 1$

$$\mathcal{L} \propto \Upsilon \sigma_z / \gamma P \eta$$

- ⇒ partial suppression of beamstrahlung
- ⇒ coherent pair production

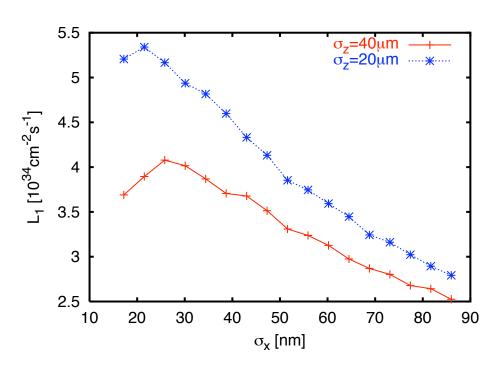
In CLIC
$$\langle \Upsilon \rangle \approx 6$$
, $N_{coh} \approx 0.1N$

⇒ somewhat in quantum regime



⇒ Use luminosity in peak as figure of merit

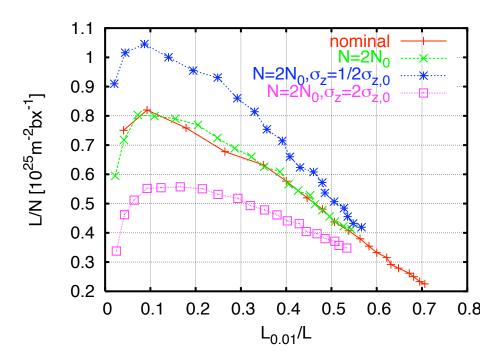
Luminosity Optimisation at IP



Total luminosity for $\Upsilon\gg 1$

$$\mathcal{L} \propto rac{N}{\sigma_x} rac{\eta}{\sigma_y} \propto rac{n_{\gamma}^{3/2}}{\sqrt{\sigma_z}} rac{\eta}{\sigma_y}$$

large $n_{\gamma} \Rightarrow$ higher $\mathcal{L} \Rightarrow$ degraded spectrum



chose n_{γ} , e.g. maximum $L_{0.01}$ or $L_{0.01}/L=0.4$ or . . .

$$\mathcal{L}_{0.01} \propto rac{\eta}{\sqrt{\sigma_z}\sigma_y}$$

Other Beam Size Limitations

- Final focus system squeezes beams to small sizes with main problems:
 - beam has energy spread (RMS of $\approx 0.35\%$) \Rightarrow avoid chromaticity
 - synchrotron radiation in bends ⇒ use weak bends ⇒ long system
 - radiation in final doublet (Oide Effect)
- Large $\beta_{x,y} \Rightarrow$ large nominal beam size
- Small $\beta_{x,y} \Rightarrow$ large distortions
- Beam-beam simulation of nominal case: effective $\sigma_x \approx 40 \, \mathrm{nm}$, $\sigma_y \approx 1 \, \mathrm{nm}$
- \Rightarrow lower limit of $\sigma_x \Rightarrow$ for small N optimum n_{γ} cannot be reached
 - new FFS reaches $\sigma_x \approx 40 \, \mathrm{nm}$, $\sigma_y \approx 1 \, \mathrm{nm}$
 - Assume that the transverse emittances remain the same
 - not strictly true
 - emittance depends on charge in damping ring (e.g $\epsilon_x(N=2\times10^9)=450\,\mathrm{nm}$, $\epsilon_x(N=4\times10^9)=550\,\mathrm{nm}$)

Beam Dynamics Work Flow

- The parameter optimisation has been performed keeping the main linac beam dynamics tolerances at the same level as for the original 30 GHz design
- The minimum spot size at the IP is dominated by BDS and damping ring
 - adjusted N/σ_x for large bunch charges to respect beam-beam limit
- ullet For each of the different frequencies and values of a/λ a scan in bunch charge N has been performed
 - the bunch length has been determined by requiring the final RMS energy spread to be $\sigma_E/E=0.35\%$ and running 12° off-crest
 - the transverse wake-kick at $2\sigma_z$ has been determined
 - the bunch charge which gave the same kick as the old parameters has been chosen
- The wakefields have been calculated using some formulae from K. Bane
 - used them partly outside range of validity
 - ⇒ but still a good approximation, confirmed by RF experts
- $\Rightarrow N$ and $L_{bx}(f, a, \sigma_a, G)$ given to RF experts

Beam Loading and Bunch Length

- Aim for shortest possible bunch (wakefields)
- Energy spread into the beam delivery system should be limited to about 1% full width or 0.35% RMS
- Multi-bunch beam loading compensated by RF
- Single bunch longitudinal wakefield needs to be compensated
 - ⇒ accelerate off-crest



• Limit around average $\Delta\Phi \leq 12^\circ$

$$\Rightarrow \sigma_z = 44 \, \mu \text{m for } N = 3.72 \times 10$$

Specific Wakefields

- Longitudinal wakefields contain more than the fundamental mode
- We will use wakefields based on fits derived by Karl Bane

l length of the cell

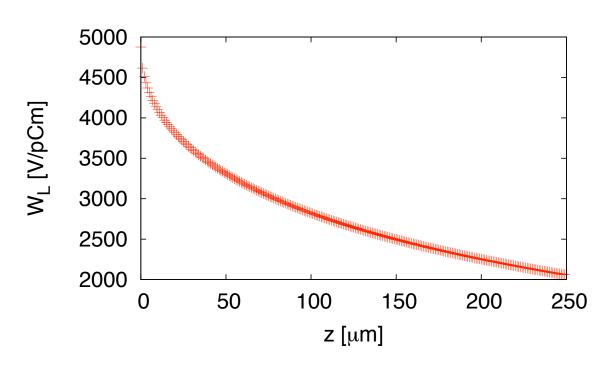
a radius of the iris aperture

g length between irises

$$s_0 = 0.41a^{1.8}g^{1.6} \left(\frac{1}{l}\right)^{2.4}$$

$$W_L = \frac{Z_0 c}{\pi a^2} \exp\left(-\sqrt{\frac{s}{s_0}}\right)$$

 Use CLIC structure parameters



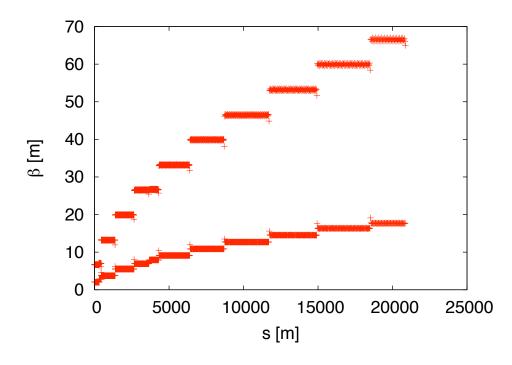
- Summation of an infinite number of cosine-like modes
 - calculation in time domain or approximations for high frequency modes

Recipe for Choosing the Bunch Parameters

- Decide on the average RF phase
 - OK, we fix 12°
- Decide on an acceptable energy spread at the end of the linac
 - OK, we chose 0.35%
- Determine $\sigma_z(N)$
 - chose a bunch charge
 - vary the bunch length until the final energy spread is acceptable
 - chose next charge
- Determine which bunch charge (and corresponding bunch length) can be transported stably

CLIC Lattice Design

- Used $\beta \propto \sqrt{E}$, $\Delta \Phi = \mathrm{const}$
 - balances wakes and dispersion
 - roughly constant fill factor
 - phase advance is chosen to balance between wakefield and ground motion effects
- Preliminary lattice
 - made for $N = 3.7 \times 10^9$
 - quadrupole dimensions need to be confirmed
 - some optimisations remain to be done
- Total length 20867.6m
 - fill factor 78.6%



- 12 different sectors used
- Matching between sectors using 7 quadrupoles to allow for some energy bandwidth

CLIC Fill Factor

- Want to achieve a constant fill factor
 - to use all drive beams efficiently
- Scaling $f = f_0 \sqrt{E/E_0}$ yields

$$L_q \propto \frac{E}{\sqrt{\frac{E}{E_0}}} \propto \sqrt{E}$$

using a quadrupole spacing of $L=L_0\sqrt{E/E_0}$ leads to

$$\frac{L_q}{L} \propto \frac{\sqrt{E}}{\sqrt{E}} \propto \text{const}$$

- ⇒ The choice allows to maintain a roughly constant fill factor
- ⇒ It maximises the focal strength along the machine

Magnet Considerations

- The maximum strength of a focusing magnet is limited
 - for a normal conducting design rule of thumb is $1\,\mathrm{T}$ at the poletip
- ⇒ Required integrated magnet strength is

$$\frac{\mathrm{T}}{\mathrm{m}} \frac{E}{0.3 \,\mathrm{GeV}} \frac{\mathrm{m}}{f}$$

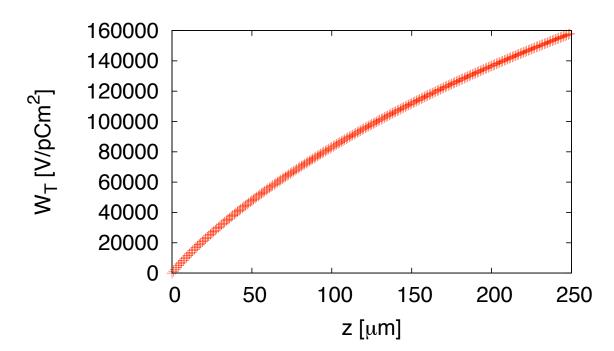
- For CLIC poletip radius is given by practical considerations of magnet design $a \approx 5\,\mathrm{mm}$ yielding a gradient of $200\,\mathrm{T/m}$
- We chose about 10% of the machine to be quadrupoles
 - \Rightarrow fill factor is $\approx 80\%$
 - 10% are lost for flanges (mainly on structures)
- Use $L_0=1.5\,\mathrm{m}$ and $f_0=1.3\,\mathrm{m}$ yields

$$\eta_q = \frac{E_0}{0.3 \,\text{GeV}} \frac{\text{T/m}}{200 \,\text{T/m}^2} \frac{\text{m}}{f_0} \frac{1}{L_0}$$
$$\Rightarrow \eta_q \approx 7.7\%$$

We use discrete lengths hence we loose a bit more

Example of a Transverse Wakefield (CLIC)

Fit obtained by K. Bane
For short distances the wakefield rises linear
Summation of an infinite number of sine-like modes with different frequencies



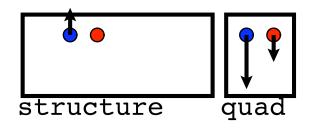
$$s_0 = 0.169a^{1.79}g^{0.38} \left(\frac{1}{l}\right)^{1.17}$$

$$w_{\perp}(s) = 4\frac{Z_0cs_0}{\pi a^4} \left[1 - \left(1 + \sqrt{\frac{s}{s_0}}\right) \exp\left(-\sqrt{\frac{s}{s_0}}\right)\right]$$

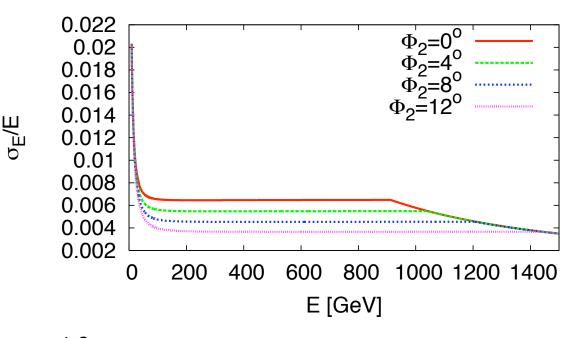
$$w_{\perp}(s) \approx 4\frac{Z_0cs_0}{\pi a^4} \left[1 - \left(1 + \sqrt{\frac{s}{s_0}}\right)\left(1 - \sqrt{\frac{s}{s_0}}\right)\right] = 4\frac{Z_0cs_0}{\pi a^4} \left[1 - \left(1 - \frac{s}{s_0}\right)\right] = 4\frac{Z_0cs}{\pi a^4}$$

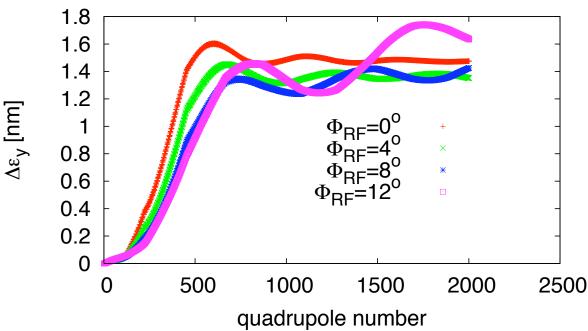
Energy Spread and Beam Stability

- Trade-off in fixed lattice
 - large energy spread is more stable
 - small energy spread is better for alignment
- \Rightarrow Beam with $N=3.7\times10^9$ can be stable



⇒ Tolerances are not a unique number



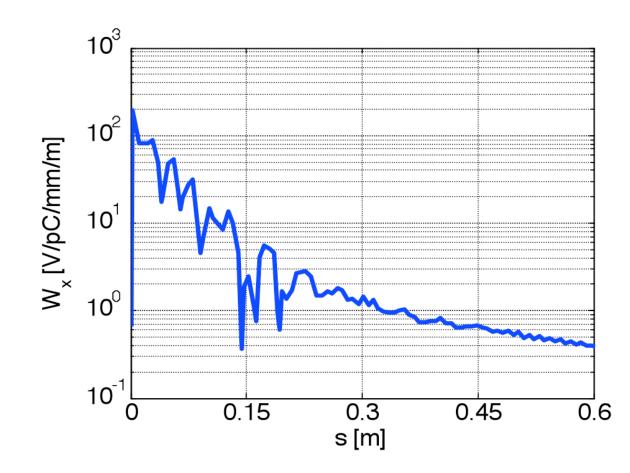


Remember: Multi-Bunch Wakefields

 Long-range transverse wakefields have the form

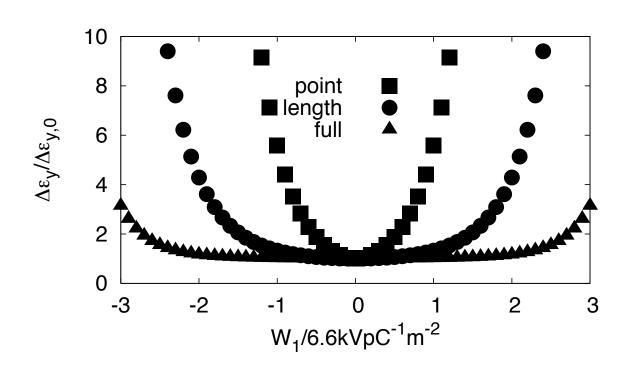
$$W_{\perp}(z) = \sum_{i=1}^{\infty} 2k_{i} \sin\left(2\pi \frac{z}{\lambda_{i}}\right) \exp\left(-\frac{\pi z}{\lambda_{i} Q_{i}}\right)$$

- In practice need to consider only a limited number of modes
- There impact can be reduced by detuning and damping



Multi-Bunch Jitter

- If bunches are not pointlike the results change
 - an energy spread leads to a more stable case
- Simulations show
 - point-like bunches
 - bunches with energy spread due to bunch length
 - including also initial energy spread

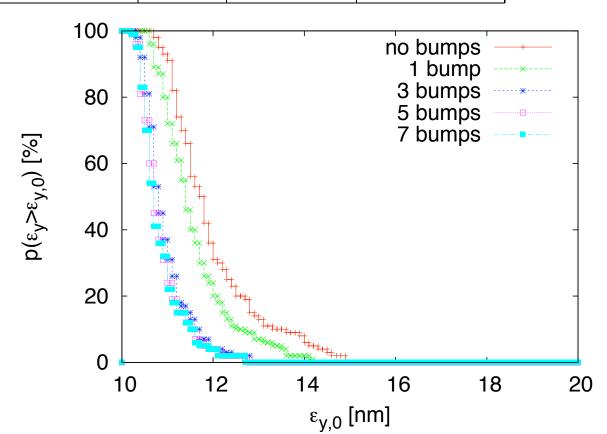


⇒ Point-like bunches is a pessimistic assumption for the dynamic effects

Final Emittance Growth (CLIC)

imperfection	with respect to	symbol	value	emitt. growth
BPM offset	wire reference	σ_{BPM}	14 $\mu\mathrm{m}$	$0.367\mathrm{nm}$
BPM resolution		σ_{res}	0.1 $\mu\mathrm{m}$	$0.04\mathrm{nm}$
accelerating structure offset	girder axis	σ_4	10 $\mu\mathrm{m}$	$0.03\mathrm{nm}$
accelerating structure tilt	girder axis	σ_t	200 μ radian	$0.38\mathrm{nm}$
articulation point offset	wire reference	σ_5	12 $\mu\mathrm{m}$	$0.1\mathrm{nm}$
girder end point	articulation point	σ_6	$5\mu\mathrm{m}$	$0.02\mathrm{nm}$
wake monitor	structure centre	σ_7	$5\mu\mathrm{m}$	$0.54\mathrm{nm}$
quadrupole roll	longitudinal axis	σ_r	100 μ radian	$\approx 0.12\mathrm{nm}$

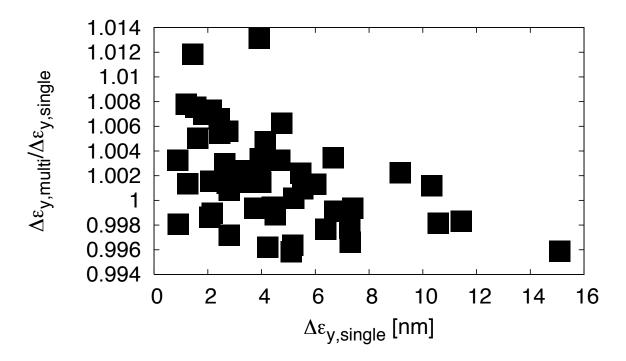
- Selected a good DFS implementation
 - trade-offs are possible
- Multi-bunch wakefield misalignments of $10\,\mu\mathrm{m}$ lead to $\Delta\epsilon_y\approx 0.13\,\mathrm{nm}$
- Performance of local prealignment is acceptable



Multi-Bunch Static Imperfections

• In CLIC

- we misalign all structures
- perform one-to-one steering with a multibunch beam
- perform one-to-one steering with a single bunch
- compare the emittance growth



CLIC Example of Fast Imperfection Tolerances

Many sources exist

Source	Luminosity budget	Tolerance
Damping ring extraction jitter	1%	
Magnetic field variations	?%	
Bunch compressor jitter	1%	
Quadrupole jitter in main linac	1%	$\Delta \epsilon_y = 0.4 \mathrm{nm}$ $\sigma_{jitter} \approx 1.8 \mathrm{nm}$
Structure pos. jitter in main linac	0.1%	$\Delta \epsilon_y = 0.04 \mathrm{nm}$ $\sigma_{jitter} \approx 800 \mathrm{nm}$
Structure angle jitter in main linac	0.1%	$\Delta \epsilon_y = 0.04 \mathrm{nm}$ $\sigma_{jitter} \approx 400 \mathrm{nradian}$
RF jitter in main linac	1%	
Crab cavity phase jitter	1%	$\sigma_{\phi} \approx 0.01^{\circ}$
Final doublet quadrupole jitter	1%	$\sigma_{jitter} \approx 0.1 \mathrm{nm}$
Other quadrupole jitter in BDS	1%	
	?%	

RF Constraints

- To limit the breakdown rate and the severeness of the breakdowns
- The maximum surface field has to be limited

$$\hat{E} < 260 \,\mathrm{MV/m}$$

The temperature rise at the surface needs to be limited

$$\Delta T < 56 \,\mathrm{T}$$

- The power flow needs to be limited
 - related to the badness of a breakdown

empirical parameter is

$$P/(2\pi a)\tau^{\frac{1}{3}} < 18 \frac{\text{MW}}{\text{mm}} \text{ns}^{\frac{1}{3}}$$

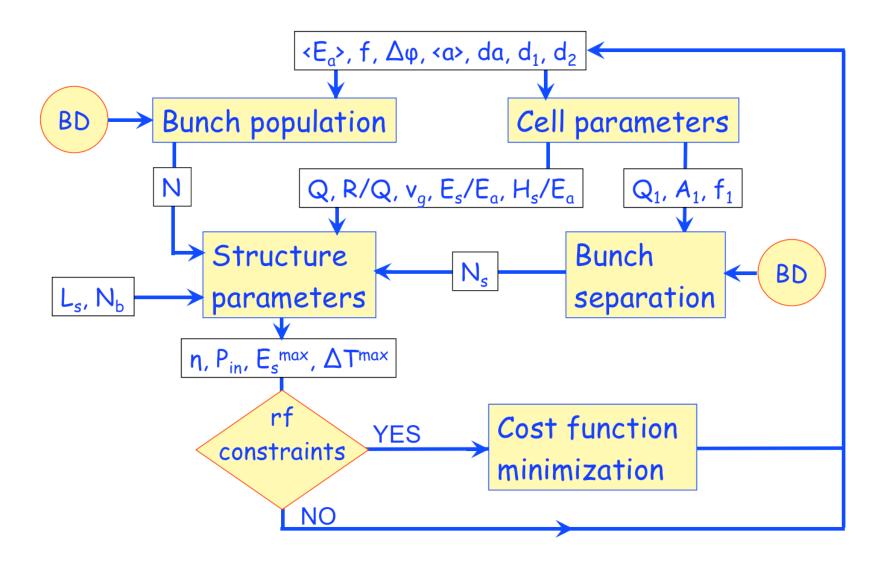
RF Work Flow

- Calculate RF properties of cells with different a/λ
 - structures can be constructed by interpolating between these values
- Remove all structures with a too high surface field
- Determine the pulse length supported by the structure
- Estimate long-range wake and chose bunch distance
 - bunch charge is given by beam dynamics
- Calculate RF to beam efficiency for the structure

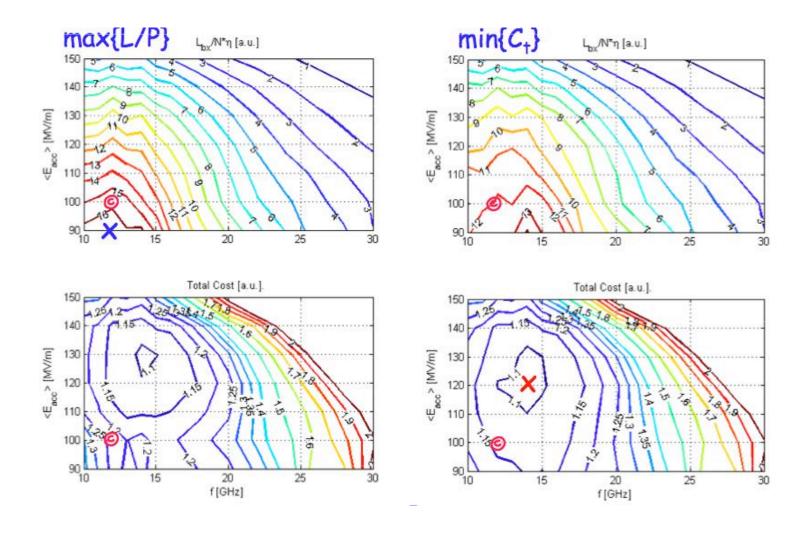
Cost Model

- The machine should be optimised for lowest cost
 - power consumption will also limit the choice
- A simplified cost model can den developed
 - e.g. cost per unit length of linac
 - energy to be stored in drive beam accelerator modulators per pulse
 - . . .
- With this model one can identify the cheapest machine

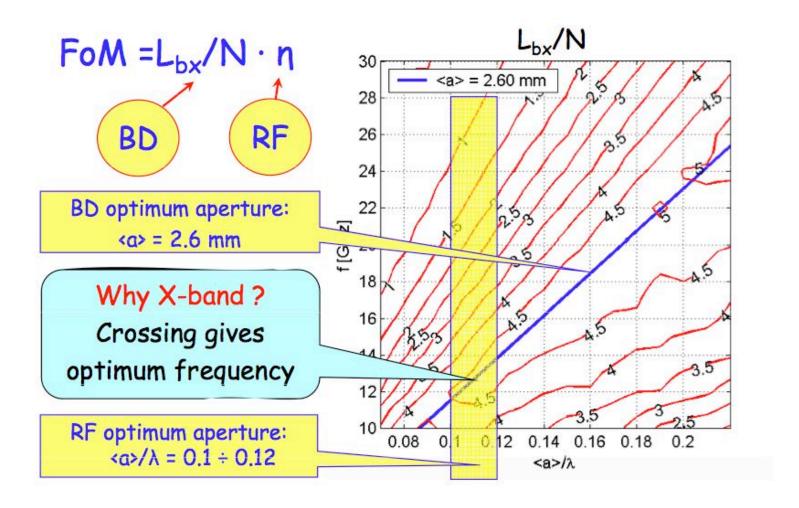
Work Flow



Results



Results 2

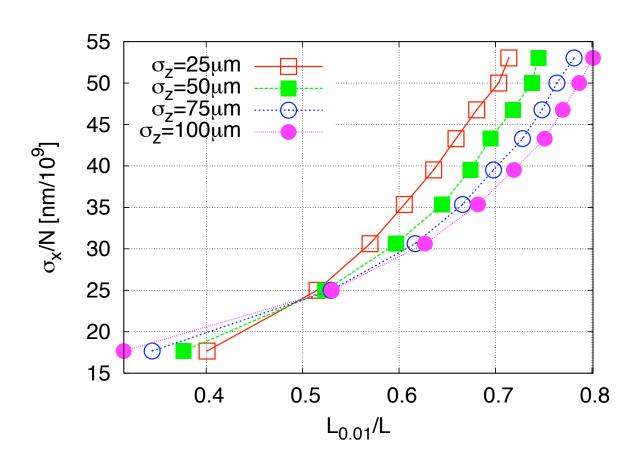


Lattice at Lower Energy

Required Beam Size (CLIC 500GeV)

- Roughly constant luminosity spectrum quality for constant N/σ_x
- ullet Required is beam size is between 25 and 40 nm for beam with $N=10^9$ particles
 - scales with the square of the charge
- For $\beta_x = 10 \, \mathrm{mm}$ and $N = 4 \times 10^9$ requires $\epsilon_x \approx 1 \, \mu \mathrm{m}$

$$\epsilon_{x,opt} \approx \left(\frac{N}{4 \times 10^9}\right)^2 \frac{10 \,\mathrm{mm}}{\beta_x} \,\mu\mathrm{m}$$

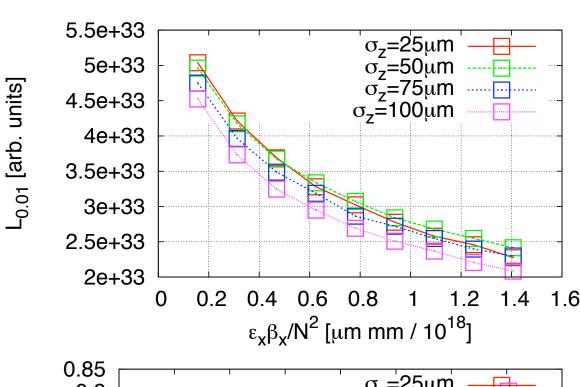


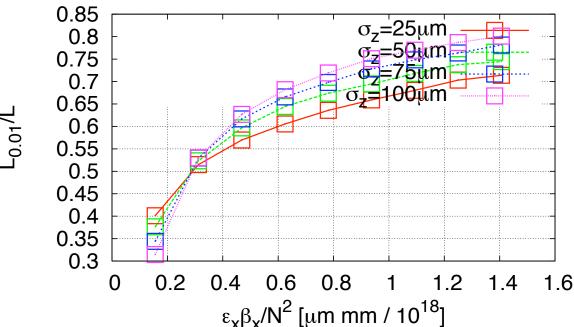
Relative Luminosity

Relevant parameter is

$$D = \frac{\beta_x}{\text{mm}} \frac{\epsilon_x}{\mu \text{m}} \left(\frac{10^9}{N}\right)^2$$
$$\frac{L_{bx}}{N} \propto \frac{1}{\sqrt{D}}$$

- Require this value to be in the range 0.3–0.7
 - $\approx 30\%$ more luminosity for lower value
- NLC had $N=7.5\times 10^9~\beta_x=10~\mathrm{mm}$ and $\epsilon_x=4~\mu\mathrm{m}$
 - -D = 0.7
 - \Rightarrow close to optimum





Beam Jitter at Lower Energy

- Two main limitations
 - local beam stability
 - integrated residual effect along the machine
- To keep the local beam stability constant yields the limitation
 - $Nw_{\perp}(2\sigma_z) = \text{const}$
 - keeps the beam energy spread constant
- A second limitation arises from the integral effect

$$\frac{d}{ds} \frac{\Delta y'/\sigma_y'}{y/\sigma_y} \propto \frac{Nw_{\perp}\sigma_y}{E\sigma_y'}$$

 \bullet Integral using lattice scaling $\beta = \beta_0 \sqrt{E(s)/E_0}$ yields

$$\frac{\Delta y'/\sigma_y'}{y/\sigma_y} \propto \frac{Nw_\perp \beta_0}{G} \sqrt{\frac{E_f}{E_0}}$$

- $Nw_{\perp}(2\sigma_z) = \mathrm{const}$ is stronger limitation as long as
 - $G \ge \sqrt{E_f/E_{f,0}}G_0$
 - For 500 GeV $G \ge 41 \,\mathrm{MV/m}$

Emittance Growth at Lower Energy

• Express structure induced emittance growth as function of energy and gradient

$$\frac{d}{ds} \frac{\Delta \epsilon(s)}{\epsilon} \propto \left(\frac{Nw_{\perp}(2\sigma_z)\Delta y L_{cav}}{E(s)} \frac{1}{\sigma_y'(s)} \right)^2 \frac{1}{L_{cav}}$$

using the lattice scaling $\beta=\beta_0\sqrt{E(s)/E_0}$ one finds

$$\Delta \epsilon_{cav} \propto \frac{N^2 w_{\perp}^2 (2\sigma_z) \Delta y^2 \beta_0 L_{tot,cav}}{G} \sqrt{\frac{E_f}{E_0}}$$

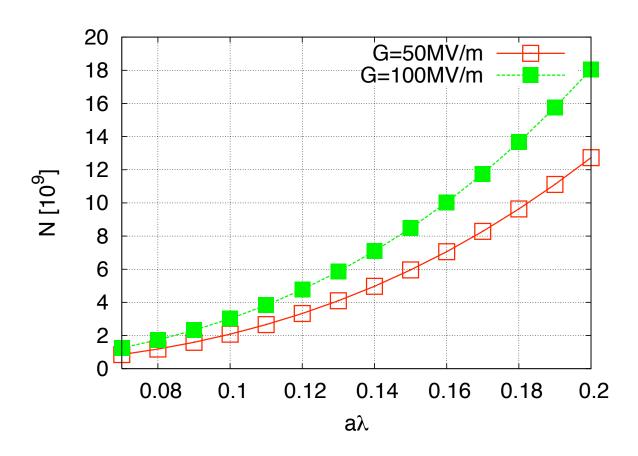
- \Rightarrow Could increase $Nw_{\perp}(2\sigma_z)$ by factor 2.4 at 500 GeV
 - for constant gradient
 - For constant Nw_{\perp} and L_{cav} we find $G \geq 41 \,\mathrm{MV/m}$
 - ullet For constant Nw_{\perp} and doubled L_{cav} we find $G \geq 82 \, \mathrm{MV/m}$
 - but for $G=50\,\mathrm{MV/m}$ still only 1.6 times as high as at $3\,\mathrm{TeV}$
 - Dispersive emittance growth scales as

$$\Delta \epsilon_{tot,disp} \propto \frac{\Delta E^2 \Delta y^2}{G} \sqrt{\frac{E_f}{E_0}}$$

- ⇒ independent of structure length
- Total emittance growth should not increase much, first simulations confirm this

Aperture and Bunch Charge

- Procedure is similar to the one for 3 TeV
 - $\sigma_y(N)$ from single bunch longitudinal wake
 - N, σ_z from transverse single bunch wake
- Keep local beam stability constant
 - leads to less bunch charge than for $3\,\mathrm{TeV}$
 - but longer bunches



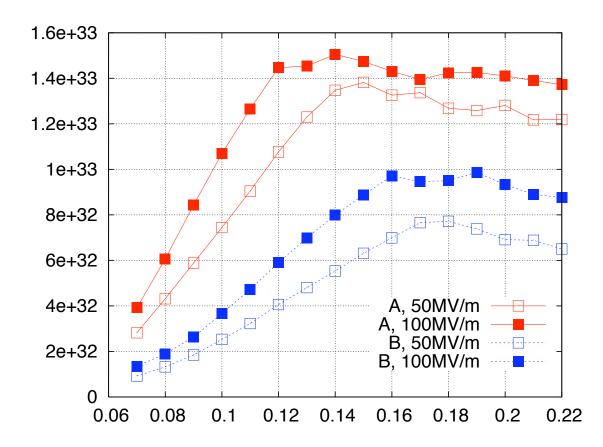
Luminosity

Assume the following

- case A
 - emittance from 3 TeV
 - beta-functions of $\beta_x=10\,\mathrm{mm}$ and $\beta_y=0.1\,\mathrm{mm}$ at the interaction point

• case B

- horizontal emittance from $\epsilon_x=3\,\mu\mathrm{m}$ at the damping ring to $\epsilon_x=4\,\mu\mathrm{m}$ at the interaction point
- vertical emittance from $\epsilon_y=10\,\mathrm{nm}$ at the damping ring to $\epsilon_y=40\,\mathrm{nm}$ at the interaction point
- beta-functions of $\beta_x=8\,\mathrm{mm}$ and $\beta_y=0.1\,\mathrm{mm}$ at the interaction point



Thanks

Many thanks to you for listening (I hope) and to those who helped prearing lecture