9. Performance Evaluation

(Vertical Test)

9.1 Cryogenics for the Vertical Test ${ }^{\text {oo }}$
9.2 Theory of RF Measurement of SRF Cavities
9.3 RF Measurement System

9.1 Cryogenics System for Vertical Test

SRF Cavity $\not \subset \mathrm{Nb} / \mathrm{Cu}$ clad cavity)

Structure of the Variable RF Input Coupler

N -connector
Variable input coupler for the vertical test in KEK

9.2 Theory of RF Measurement of SRF Cavities

One-Port Cavity

$$
\begin{aligned}
& \mathbf{Q}_{\mathbf{O}} \equiv \frac{\omega \mathrm{U}}{\mathbf{P}_{\text {loss }}}, \\
& \mathrm{Q}_{\mathrm{L}} \equiv \frac{\omega \mathrm{U}}{\mathbf{P}_{\text {loss }}+\mathbf{P}_{\mathbf{e}}}=\frac{\omega \mathrm{U}}{\mathbf{P}_{\text {loss }}\left(1+\frac{\mathbf{P}_{\mathbf{e}}}{\mathbf{P}_{\text {loss }}}\right)} \quad \text { (for one port) } \\
& \left.\begin{array}{l}
\tau_{1 / 2} \\
\mathbf{P}_{\text {in }}
\end{array}\right\} \text { Measurement } \\
& =\frac{Q_{0}}{\left(1+\beta_{\text {in }}\right)} \\
& \mathbf{Q}_{\mathbf{0}}=\left(1+\beta_{\text {in }}\right) \cdot \mathbf{Q}_{\mathbf{L}} \\
& \text { Equivalent Circuit model } \\
& \text { Calculation } \mathrm{Q}_{\mathrm{L}}, \beta_{\text {in }} \\
& \beta_{\text {in }} \equiv \frac{P_{\mathrm{e}}}{\mathbf{P}_{\text {loss }}}=\frac{1 \pm \sqrt{\mathrm{P}_{\mathrm{r}} / \mathrm{P}_{\text {in }}}}{1 \mp \sqrt{\mathbf{P}_{\mathrm{r}} / \mathrm{P}_{\mathrm{in}}}} \quad(\text { over }>1 / \text { under }<1) \\
& \text { Calculation Qo } \\
& \mathbf{R}_{\mathrm{s}}=\frac{\Gamma}{\mathbf{Q}_{\mathbf{0}}}
\end{aligned}
$$

Two-Port Cavity

$$
\begin{aligned}
& \mathbf{Q}_{0}^{*}=\frac{\mathbf{Q}_{0}}{\left(1+\beta_{t}\right)}=\left(1+\beta_{\text {in }}^{*}\right)\left[\mathbf{Q}_{\mathrm{L}}\right. \\
& \mathbf{Q}_{\mathbf{0}}=\left(1+\beta_{\text {in }}^{*}\right) \square\left(1+\beta_{\mathrm{t}}\right)\left[\mathbf{Q}_{\mathrm{L}}\right. \\
& =\left[1+\left(1+\beta_{t}\right) \square \beta_{\text {in }}^{*}+\beta_{t}\right] Q_{L} \\
& =\left(1+\beta_{\text {in }}+\beta_{\mathrm{t}}\right) \subset \mathrm{Q}_{\mathrm{L}} \quad \because \beta_{\text {in }} \equiv\left(1+\beta_{\mathrm{t}}\right) \square \beta_{\text {in }}^{*} \\
& \mathbf{Q}_{\mathbf{0}} \equiv \frac{\omega \mathbf{U}}{\mathbf{P}_{\text {loss }}}, \mathbf{Q}_{\mathbf{t}} \equiv \frac{\omega \mathbf{U}}{\mathbf{P}_{\mathbf{t}}}=\frac{\omega \mathbf{U} / \mathbf{P}_{\text {loss }}}{\mathbf{P}_{\mathrm{t}} / \mathbf{P}_{\text {loss }}}=\beta_{\mathrm{t}} \cdot \mathbf{Q}_{\mathbf{0}} \\
& \omega \mathrm{U}=\mathbf{Q}_{\mathbf{0}} \cdot \mathbf{P}_{\text {loss }}=\mathbf{Q}_{\mathbf{t}} \cdot \mathbf{P}_{\mathbf{t}} \\
& \mathbf{P}_{\text {loss }}=\mathbf{P}_{\text {in }}-\mathbf{P}_{\mathrm{r}}-\mathbf{P}_{\mathrm{t}} \\
& \text { Stationary state } \mathrm{h}=\text { const } \Leftarrow \mathrm{U} \text { const }
\end{aligned}
$$

Calculation of Gradient

$$
\begin{aligned}
R_{s h} & =\frac{V^{2}}{P_{\text {loss }}} \because V=E_{\text {acc }} \cdot d_{\text {eff }} \\
& =\frac{\left(\text { Eacc } \cdot d_{\text {eff }}\right)^{2}}{P_{\text {loss }}}
\end{aligned}
$$

$$
\text { Eacc }=\frac{1}{d_{\text {eff }}} \cdot \sqrt{R_{\text {sh }} \cdot P_{\text {loss }}}=\frac{\sqrt{R_{\text {sh }} / Q_{o}}}{d_{\text {eff }}} \cdot \sqrt{Q_{o} \cdot P_{\text {loss }}}=Z \cdot \sqrt{Q_{o} \cdot P_{\text {loss }}}
$$

$$
=Z \cdot \sqrt{Q_{t} \cdot P_{t}}
$$

$\because Q_{0} \cdot P_{\text {loss }}=Q_{t} \cdot P_{t}$
Once measured the $Q_{t 2}$, you can calculate Eacc directly from P_{t} and Q_{t}. Q_{O} is also directly calculated from them.
You don't need to measure the decay time for every gradient.

Cable Correction

9.3 RF Measurement System

Measurement of Surface Resistance

High Gradient Measurement Qo-Eacc curve

