9. Performance Evaluation (Vertical Test)

9.1 Cryogenics System for Vertical Test

SRF Cavity (a Nb/Cu clad cavity)

Structure of the Variable RF Input Coupler

Variable input coupler for the vertical test in KEK

9.2 Theory of RF Measurement of SRF Cavities

One-Port Cavity

Two-Port Cavity

$$Q_{o}^{*} = \frac{Q_{o}}{(1+\beta_{t})} = (1+\beta_{in}^{*}) \cdot Q_{L}$$

$$Q_{o} = (1+\beta_{in}^{*}) \cdot (1+\beta_{t}) \cdot Q_{L}$$

$$= \left[1+(1+\beta_{t}) \cdot \beta_{in}^{*} + \beta_{t}\right] Q_{L}$$

$$= (1+\beta_{in} + \beta_{t}) \cdot Q_{L} \quad \because \beta_{in} \equiv (1+\beta_{t}) \cdot \beta_{in}^{*}$$

$$Q_{o} \equiv \frac{\omega U}{P_{loss}}, Q_{t} \equiv \frac{\omega U}{P_{t}} = \frac{\omega U/P_{loss}}{P_{t}/P_{loss}} = \beta_{t} \cdot Q_{o}$$

$$\omega U = Q_{o} \cdot P_{loss} = Q_{t} \cdot P_{t}$$

$$P_{loss} = P_{in} - P_{r} - P_{t}$$
Stationary state : h = const \leftarrow U const
$$P_{t} \quad 302$$

Calculation of Gradient

$$R_{sh} = \frac{V^2}{P_{loss}} \quad \because \quad V = E_{acc} \cdot d_{eff}$$

$$= \frac{(Eacc \cdot d_{eff})^2}{P_{loss}}$$

$$Eacc = \frac{1}{d_{eff}} \cdot \sqrt{R_{sh} \cdot P_{loss}} = \frac{\sqrt{R_{sh}/Q_o}}{d_{eff}} \cdot \sqrt{Q_o \cdot P_{loss}} = Z \cdot \sqrt{Q_o \cdot P_{loss}}$$

$$= Z \cdot \sqrt{Q_t \cdot P_t}$$

$$\therefore Q_O \cdot P_{loss} = Q_t \cdot P_t$$

Once measured the Q_{t} you can calculate Eacc directly from P_t and Q_t . Q_0 is also directly calculated from them. You don't need to measure the decay time for every gradient.

Cable Correction

Exercise VII.

9.3 RF Measurement System

f_{SG} f_C

305

Measurement of Surface Resistance

306

High Gradient Measurement Qo-Eacc curve

